|本期目录/Table of Contents|

[1]吕晓婷,洪宇桁,牛文彦.短链脂肪酸对C2C12小鼠骨骼肌细胞AMPK的作用研究[J].天津医科大学学报,2019,25(01):1-4,23.
 LV Xiao-ting,HONG Yu-heng,NIU Wen-yan.Effect of short-chain fatty acids on AMPK in mouse C2C12 skeletal muscle cells[J].Journal of Tianjin Medical University,2019,25(01):1-4,23.
点击复制

短链脂肪酸对C2C12小鼠骨骼肌细胞AMPK的作用研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
25卷
期数:
2019年01期
页码:
1-4,23
栏目:
基础医学
出版日期:
2019-01-20

文章信息/Info

Title:
Effect of short-chain fatty acids on AMPK in mouse C2C12 skeletal muscle cells
文章编号:
1006-8147(2019)01-0001-04
作者:
吕晓婷1洪宇桁2牛文彦1
(1.天津医科大学免疫学系,天津300070;2.天津医科大学医学影像学院,天津300203)
Author(s):
LV Xiao-ting1 HONG Yu-heng2 NIU Wen-yan1
(1.Department of Immunology, Tianjin Medical University, Tianjin 300070, China; 2.School of Medical Imaging ,Tianjin Medical University, Tianjin 300203, China)
关键词:
骨骼肌短链脂肪酸AMPK
Keywords:
skeletal muscle SCFAs AMPK
分类号:
R392.1
DOI:
-
文献标志码:
A
摘要:
目的:探讨短链脂肪酸对C2C12小鼠骨骼肌细胞AMPK的作用。方法:分别用不同浓度的乙酸钠、丙酸钠和丁酸钠孵育C2C12细胞24 h,MTS试验检测细胞活力,Western blot检测AMPK磷酸化水平。结果:与对照组相比,1 mmol/L和4 mmol/L乙酸钠,4 mmol/L丙酸钠以及4 mmol/L、8 mmol/L和16 mmol/L丁酸钠升高AMPK磷酸化水平,但不影响其总蛋白水平。结论:短链脂肪酸激活C2C12小鼠骨骼肌细胞AMPK。
Abstract:
Objective: To investigate the effect of SCFAs on AMPK in mouse C2C12 skeletal muscle cells. Methods: C2C12 cells were incubated with different concentrations of sodium acetate, sodium propionate and sodium butyrate for 24 hours, respectively. The cell viability was measured by MTS assay. The phosphorylation of AMPK was detected by western blot. Results: Compared with the control group, the phosphorylation of AMPK increased under treatments with 1 mmol/L and 4 mmol/L sodium acetate, 4 mmol/L propionate and 4 mmol/L, 8 mmol/L, and 16 mmol/L butyrate, respectively. The total protein level of AMPK was not affected. Conclusion: SCFAs phosphorylate AMPK in mouse C2C12 skeletal muscle cells.

参考文献/References:


[1] Kasangana P B, Nachar A, Eid H M, et al. Root bark extracts of Myrianthus arboreus P. Beauv. (Cecropiaceae) exhibit anti-diabetic potential by modulating hepatocyte glucose homeostasis[J]. J ethnopharmacol, 2018, 211:117
[2] Bryan K, McGivney B A, Farries G, et al. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components[J]. BMC genomics, 2017, 18(1): 595
[3] Krabbe K S, Nielsen A R, Krogh-Madsen R, et al. Brain-derived neurotrophic factor(BDNF) and type 2 diabetes [J]. Diabetologia, 2007, 50(2): 431
[4] Friedrichsen M, Mortensen B, Pehmoller C, et al. Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity [J]. Mol cell endocrinol, 2013, 366(2): 204
[5] Xie W, Wang L, Dai Q, et al. Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation [J]. J mol cell cardiol, 2015, 85:155
[6] Maruvada P, Leone V, Kaplan L M, et al. The human microbiome and obesity: moving beyond associations[J]. Cell Host Microbe, 2017, 22(5): 589
[7] Canfora E E, Jocken J W, Blaak E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nat rev Endocrinol, 2015, 11(10): 577
[8] den Besten G, Bleeker A, Gerding A, et al. Short-Chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7): 2398
[9] Zhang B B, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome[J]. Cell metab, 2009, 9(5): 407
[10] 廖健文, 岳莹莹, 牛文彦. AMPK对Rab-GAP的调节作用研究 [J]. 天津医科大学学报, 2018, 24(2): 97
[11] Hardie D G. AMPK-sensing energy while talking to other signaling pathways[J]. Cell metab, 2014, 20(6): 939
[12] Lantier L, Fentz J, Mounier R, et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity[J]. FASEB J, 2014, 28(7): 3211
[13] Lin Y H, Chen Y, Smith T C 2nd, et al. Short-Chain Fatty Acids (SCFAs) alter metabolic and virulence attributes of Borrelia burgdorferi[J]. Infect immun, 2018, 86(9): pii: e00217-18. doi: 10.1128/IAI.00217-18. Print 2018 Sep
[14] Andersson U, Branning C, Ahrne S, et al. Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse[J]. Benef microbes, 2010, 1(2): 189
[15] Membrez M, Blancher F, Jaquet M, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice[J]. FASEB J, 2008, 22(7): 2416
[16] Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509
[17] Palacios-Gonzalez B, Zarain-Herzberg A, Flores-Galicia I, et al. Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle[J]. Biochim Biophys Acta, 2014, 1841(1): 132

相似文献/References:

[1]李 青,郭 刚,Bilan Philip,等.电刺激促进大鼠骨骼肌细胞GLUT4转位并激活Akt信号通路[J].天津医科大学学报,2014,20(02):102.
 LI Qing,GUO Gang,Bilan Philip,et al.Electric pulse stimulation-induced GLUT4 translocation and activated Akt signaling pathway in L6-GLUT4myc-AS160 myotubes[J].Journal of Tianjin Medical University,2014,20(01):102.
[2]刘 倩,胡 芳,牛文彦.AMPK腺病毒载体在小鼠骨骼肌中的表达和作用[J].天津医科大学学报,2016,22(01):1.
 LIU Qian,HU Fang,NIU Wen-yan.Effect and expression of AMPK adenovirus on mouse skeletal muscle[J].Journal of Tianjin Medical University,2016,22(01):1.
[3]齐睿,牛文彦.双氢睾酮逆转棕榈酸诱导的小鼠骨骼肌细胞胰岛素抵抗及其机制[J].天津医科大学学报,2022,28(02):140.
 QI Rui,NIU Wen-yan.Palmitic acid-induced insulin resistance in mouse skeletal muscle cells reversed by dihydrotestosterone and its mechanism[J].Journal of Tianjin Medical University,2022,28(01):140.
[4]岳莹莹,穆红,牛文彦.Axin1调节骨骼肌GLUT4蛋白表达的作用研究[J].天津医科大学学报,2023,29(01):36.
 YUE Ying-ying,MU Hong,NIU Wen-yan.Study the effect of Axin1 on regulating GLUT4 protein in skeletal muscle[J].Journal of Tianjin Medical University,2023,29(01):36.
[5]郭洋,张露露,牛文彦.二甲双胍通过调控MSTN抑制小鼠骨骼肌细胞C2C12分化[J].天津医科大学学报,2023,29(01):41.
 GUO Yang,ZHANG Lu-lu,NIU Wen-yan.Metformin inhibits the differentiation of C2C12 murine skeletal muscle cells by regulating MSTN[J].Journal of Tianjin Medical University,2023,29(01):41.
[6]孙亚朝,邓邦利,牛文彦.短链脂肪酸对肝细胞糖脂代谢调节的作用机制研究[J].天津医科大学学报,2023,29(02):126.
 SUN Ya-zhao,DENG Bang-li,NIU Wen-yan.Study of the mechanism of short chain fatty acids-regulated glucose and lipid metabolism in hepatocytes[J].Journal of Tianjin Medical University,2023,29(01):126.
[7]张露露,郭洋,王新莉,等.组蛋白去乙酰化酶抑制剂Chidamide抑制C2C12骨骼肌细胞分化及其机制[J].天津医科大学学报,2023,29(02):142.
 ZHANG Lu-lu,GUO Yang,WANG Xin-li,et al.The inhibitive effect of histone deacetylase inhibitor Chidamide on the differentiation of C2C12 skeletal muscle cells and its mechanism[J].Journal of Tianjin Medical University,2023,29(01):142.
[8]倪钰鸽,盛 菲,牛文彦.环氧化酶2抑制剂parecoxib对C2C12骨骼肌细胞分化的影响及机制研究[J].天津医科大学学报,2024,30(02):138.[doi:10.20135/j.issn.1006-8147.2024.02.0138]
 NI Yuge,SHENG Fei,NIU Wenyan.Study of effect and mechanism of cyclooxygenase-2 inhibitor parecoxib on the differentiation of C2C12 skeletal muscle cells[J].Journal of Tianjin Medical University,2024,30(01):138.[doi:10.20135/j.issn.1006-8147.2024.02.0138]

备注/Memo

备注/Memo:
基金项目 国家自然科学基金面上项目(81670731);天津市科委应用基础研究重点项目(15JCZDJC35500);天津市卫计委重点攻关项目(15KG102 )
作者简介 吕晓婷(1992-),女,硕士在读,研究方向:免疫学;通信作者:牛文彦,E-mail:wniu@tmu.edu.cn。
更新日期/Last Update: 2019-03-01