|本期目录/Table of Contents|

[1]赵芳石 综述,张雪君,潘金彬 审校.纳米颗粒用于治疗不同阶段缺血性卒中的研究进展[J].天津医科大学学报,2023,29(03):332.
点击复制

纳米颗粒用于治疗不同阶段缺血性卒中的研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年03期
页码:
332
栏目:
综述
出版日期:
2023-05-20

文章信息/Info

Title:
-
文章编号:
1006-8147(2023)03-0332-04
作者:
赵芳石1 综述张雪君2潘金彬1 审校
(1.天津医科大学总医院医学影像科,天津300052;2.天津医科大学医学技术学院,天津300270)
Author(s):
-
关键词:
卒中缺血性卒中纳米颗粒
Keywords:
-
分类号:
R453.9
DOI:
-
文献标志码:
A
摘要:
目的:缺血性卒中的死亡率和发病率居全球第二,分为4个血流动力学阶段:超急性期、急性期、亚急性期和慢性期,分别表现不同的病理生理改变。目前缺血性卒中治疗高度依赖再通疗法,治疗时间窗窄,仅限于部分患者,迫切需求新的缺血性卒中治疗方法。纳米颗粒可针对在缺血性卒中不同阶段的病理生理机制,通过携带不同粒子,作用于缺血性卒中区域,从而改善缺血性卒中产生的损伤并完成神经的修复。超急性期纳米颗粒主要针对溶栓和血脑屏障的破坏;急性期纳米颗粒在于缓解神经炎症的损伤;亚急性期和慢性期纳米颗粒主要围绕修复过程,包括血管新生和神经发生。
Abstract:
-

参考文献/References:

[1] JOHNSON C O,NGUYEN M,ROTH G A,et al. Global,regional,and national burden of stroke,1990-2016:a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurology,2019,18(5):439-458.
[2] CAMPBELL B C V,KHATRI P. Stroke[J]. Lancet,2020,396(10244):129-142.
[3] WANG Z D,HU T T,LIANG R Z,et al. Application of zero-dimensional nanomaterials in biosensing[J]. Front Chem,2020,8:320.
[4] DONG X Y,GAO J,SU Y J,et al. Nanomedicine for ischemic stroke[J]. Int J Mol Sci,2020,21(20):7600.
[5] BONNARD T,GAUBERTI M,MARTINEZ DE LIZARRONDO S,et al. Recent advances in nanomedicine for ischemic and hemorrhagicstroke[J]. Stroke,2019,50(5):1318-1324
[6] THOMAS M A,HAZANY S,ELLINGSON B M,et al. Pathophysiology,classification,and MRI parallels in microvascular disease of the heart and brain[J]. Microcirculation,2020,27(8):e12648.
[7] PANDIT R,CHEN L Y,GOTZ J. The blood-brain barrier:physiology and strategies for drug delivery[J]. Adv Drug Deliv Rev,2020,165-166:1-14.
[8] BERNARDO-CASTRO S,SOUSA J A,BRAS A,et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery[J]. Front Neurol,2020,11:594672.
[9] ABDULLAHI W,TRIPATHI D,RONALDSON P T. Blood-brain barrier dysfunction in ischemic stroke:targeting tight junctions and transporters for vascular protection[J]. Am J Physiol Cell Physiol,2018,315(3):C343-C356.
[10] BROOKS B,EBEDES D,USMANI A,et al. Mesenchymal stromal cells in ischemic brain injury[J]. Cells,2022,11(6):1013.
[12] ORNELLO R,DEGAN D,TISEO C,et al. Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes asystematic review and Meta-analysis[J]. Stroke,2018,49(4):814.
[13] CRAMER S C. Recovery after stroke[J]. Continuum (Minneapolis,Minn.),2020,26(2):415-434.
[14] YANG Q W,HUANG Q Y,HU Z P,et al. Potential neuroprotectivetreatment of stroke:targeting excitotoxicity,oxidative stress,and inflammation[J]. Front Neuro,2019,13:1036.
[15] DE ABREU R C,FERNANDES H,MARTINS PAD,et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J]. Nature Rev Cardiol,2020,17(11):685-697.
[16] WALKER S,BUSATTO S,PHAM A,et al. Extracellular vesicle-based drug delivery systems for cancer treatment[J]. Theranostics,2019,9(26):8001-8017.
[17] MITCHELL M J,BILLINGSLEY M M,HALEY R M,et al. Engineering precision nanoparticles for drug delivery[J]. Nature Rev Drug Dis,2021,20(2):101-124.
[18] YU Y,ZHANG F L,QU Y M,et al. Intracranial calcification is predictive for hemorrhagic transformation and prognosis after intravenous thrombolysis in non-cardioembolicstroke patients[J]. J Atheroscler Thromb,2021,28(4):356-364.
[19] BONNARD T,GAUBERTI M,DE LIZARRONDO S M,et al. Recent advances in nanomedicine for ischemic and hemorrhagic stroke[J]. Stroke,2019,50(5):1318-1324.
[20] ABSAR S,NAHAR K,KWON Y M,et al. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy[J]. Pharm Res,2013,30(6):1663-1676.
[21] HSU H L,CHEN J P. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis[J]. J Magnetism Magnetic Materials,2017,427:188-194.
[22] VOROS E,CHO M J,RAMIREZ M,et al. TPA immobilization on iron oxide nanocubes and localized magnetic hyperthermia accelerate blood clot lysis[J]. Adv Funct Mater,2015,25(11):1709-1718.
[23] FUKUTA T,ASAI T,YANAGIDA Y,et al. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke[J]. Faseb J,2017,31(5):1879-1890.
[24] ISLAM Y,KHALID A,PLUCHINO S,et al. Development of brain targeting peptide based MMP-9 inhibiting nanoparticles for the treatment of brain diseases with elevated MMP-9 activity[J]. J Pharm Sci,2020,109(10):3134-3144.
[25] MACHADO-PEREIRA M,SANTOS T,FERREIRA L,et al. Anti-inflammatory strategy for M2 microglial polarization using retinoic acid-loaded nanoparticles[J]. Mediators Inflamm,2017,2017:6742427.
[26] GENG W J,TANG H L,LUO S,et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation[J]. Am J Translat Res,2019,11(2):780.
[27] AMANI H,HABIBEY R,SHOKRI F,et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling[J]. Sci Rep,2019,9(1):6044.
[28] DRESANG H C,HARVEY D Y,XIE S X,et al. Genetic and neurophysiological biomarkers of neuroplasticity inform post-stroke language recovery[J]. Neurorehabil Neural Repair,2022,36(6):371-380.
[29] SUBRAMANIYAN PARIMALAM S,BADILESCU S,SONENBERG N,et al. Lab-on-a-chip for the development of pro-/anti-angiogenicnanomedicines to treat brain diseases[J]. Int J Mol Sci,2019,20(24):6126.
[30] KIM D H,SEO Y K,THAMBI T,et al. Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1 alpha using a dual ionic pH-sensitive copolymer[J]. Biomaterials,2015,61:115-125.
[31] DENG L N,ZHANG F,WU Y L,et al. RGD-modified nanocarrier-mediated targeted delivery of HIF-1 alpha-AA plasmid DNA to cerebrovascular endothelial cells for ischemic stroke treatment[J]. ACS Biomateri Sci Eng,2019,5(11):6254-6264.
[32] JIAN W H,WANG H C,KUAN C H,et al. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration[J]. Biomaterials,2018,174:17-30.
[33] ZHANG H X,WU J,WU J H,et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice[J]. J Nanobiotechnology,2019,17(1):29.
[34] YANG J L,ZHANG X F,CHEN X J,et al. Exosomemediated delivery of miR-124 promotes neurogenesis after ischemia[J]. Mol Ther Nucleic Acids,2017,7: 278-287.
[35] FERREIRA R,FONSECA M C,SANTOS T,et al. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia[J]. Nanoscale,2016,8(15):8126-8137.
[36] WANG C X,LIN G,LUAN Y,et al. HIF-prolyl hydroxylase 2 silencing using siRNA delivered by MRI-visible nanoparticles improves therapy efficacy of transplanted EPCs for ischemic stroke[J]. Biomaterials,2019,197:229-243.
[37] WANG Y F,COOKE M J,SACHEWSKY N,et al. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke[J]. J Controlled Release,2013,172(1):1-11.
[38] YEMISCI M,CABAN S,GURSOY-OZDEMIR Y,et al. Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection[J]. J Cerebral Blood Flow Metabolism,2015,35(3):469-475.
[39] XIN H Q,WANG F J,LI Y F,et al. Secondary release of exosomesfrom astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomesharvested from microRNA 133b-overexpressing multipotentmesenchymalstromal cells[J]. Cell Transplantation,2017,26(2):243-257.
[40] LING X,ZHANG G,XIA Y,et al. Exosomes from human urine-derived stem cells enhanced neurogenesis via miR-26a/HDAC6 axis after ischaemic stroke[J]. J Cell Mol Med,2020,24(1):640-654.

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(81801829)
作者简介 赵芳石(1991-),女,主治医师,硕士,研究方向:神经系统纳米诊疗;通信作者:张雪君,E-mail:zhangxj@tmu.edu.cn。
更新日期/Last Update: 1900-01-01