|本期目录/Table of Contents|

[1]苏毅,隋磊,吴陈炫.不同表面结构个性化根形种植体的应力分布分析[J].天津医科大学学报,2021,27(03):296-300.
 SU Yi,SUI Lei,WU Chen-xuan.The stress distribution analysis of custom made root-analogue implant with different surface structures[J].Journal of Tianjin Medical University,2021,27(03):296-300.
点击复制

不同表面结构个性化根形种植体的应力分布分析(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
27卷
期数:
2021年03期
页码:
296-300
栏目:
技术与方法
出版日期:
2021-05-30

文章信息/Info

Title:
The stress distribution analysis of custom made root-analogue implant with different surface structures
文章编号:
1006-8147(2021)03-0296-05
作者:
苏毅12隋磊1 吴陈炫3
1.天津医科大学口腔医院修复科,天津 300070;2.联勤保障部队天津康复疗养中心,天津 300381;3.天津医科大学口腔医院牙周科,天津 300070
Author(s):
SU Yi12 SUI Lei1WU Chen-xuan3
1.Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China; 2.Tianjin Rehabilitation Center of Joint Logistic Support Force, Tianjin 300381, China; 3.Department of Periodontology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
关键词:
表面结构个性化根形种植体应力分布
Keywords:
surface structure custom made root-analogue implant stress distribution
分类号:
R783.4
DOI:
-
文献标志码:
A
摘要:
目的:通过三维有限元法对不同表面结构个性化根形种植体进行应力分析。方法:建立多孔联通表面结构和光滑连续表面结构的两组个性化根形种植体及4类骨组织模型。分别施加垂直向力、侧向力、组合■力,分析不同表面结构个性化根形种植体周围骨组织的Von-Mises等效应力、等效应变。结果:在相同载荷及骨质条件下,光滑连续表面结构的个性化根形种植体周围骨组织承受的应力、产生的应变,均高于多孔联通表面结构个性化根形种植体周围骨组织。结论:多孔联通表面结构的个性化根形种植体较光滑连续表面结构的个性化根形种植体周围骨组织承受的应力,产生的应变更符合骨组织的力学适应性。
Abstract:
Objective: To analyze the stress of custom made root-analogue implant with different surface structures by three-dimensional finite element analysis. Methods: Two groups of personalized root implants with the interconnected porous surface structure and the smooth continuous surface structure, and four types of bone tissue models were established. The equivalent stress and strain of Von-Mises on bone tissue around implants with different surface structures were analyzed by applying the vertical force, the oblique force, and the combination occlusal force. Results: The stress and strain of the bone tissue around the personalized root implant with the smooth continuous surface structure were higher than those of the bone tissue around the personalized root implant with the interconnected porous surface structure under the same load and bone mass condition. Conclusion: Compared with the smooth continuous surface structure, the resulting change of the stress and strain of the bone tissue around the personalized root implant with the interconnected porous surface structure is consistent with the mechanical adaptability of the bone tissue.

参考文献/References:

[1] Mangano F G,Franco M D,Alberto C,et al. Immediate,non-submerged,root-analogue direct laser metal sintering(DLMS)implants:a 1-year prospective study on 15 patients[J]. Lasers Med Sci,2014, 29(4):1321
[2] Nair A,Prithviraj D,Regish K,et al. Custom milled zirconia implant supporting an ceramic zirconia restoration:a clinical report[J]. Kathmandu Univ Med J,2013,11(44):328
[3] Wang X,Xu S,Zhou S,et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review[J]. Biomaterials,2016,83(6):127
[4] Savadi R C ,Agarwal J ,Agarwal R S ,et al. Influence of implant surface topography and loading condition on stress distribution in bone around implants: a Comparative 3D FEA[J]. J Indian Prosthodont Soc,2011,11(4):221
[5] 甘雪琦,肖宇,马瑞阳,等. 牙种植体的生物力学研究[J].华西口腔医学杂志,2019,37(2):115
[6] Xue W,Krishna B V,Bandyopadhyay A,et al. Processing and biocompatibility evaluation of laser processed porous titanium[J]. Acta Biomater,2007,3:1007
[7] 蔡彦坤. 具有多孔表面的个性化根形种植体的设计[D].天津医科大学,2018
[8] Demenko V,Linetsky I,Nesvit V,et al. FE study of bone quality effect on load-carrying ability of dental implants[J]. Comput Methods Biomech Biomed Engin,2014,1716(16):1751
[9] Baggi L,Cappelloni I,Girolamo M D,et al. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry:a three-dimensional finite element analysis [J]. J Prosthet Dent,2008,100(6):422
[10] 皮昕. 口腔解剖生理学. 第十五章咀嚼[M]. 第7版,北京:人民卫生出版社,320
[11] Demenko V ,Linetskiy I ,Nesvit K ,et al. Ultimate masticatory force as a criterion in implant selection[J]. J Dent Res,2011,90(10):1211
[12] Carl E. 口腔种植修复学. 第五章骨对力学负荷的反应[M]. 陈刚,马攀,朱一博译. 江苏:凤凰科学技术出版社,2019:96
[13] Mangano F G,Cirotti B,Sammons R L,et al. Custom-made,root-analogue direct laser metal forming implant:a case report[J]. Lasers Med Sci,2012,27(6):1241
[14] 彭伟,周乐峰,徐旭,等. 多根牙种植体初期稳定性的有限元分析[J]. 浙江工业大学学报,2016,44(3):283
[15] Park C H,Lee C S,Kim Y J,et al. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy[J]. Clin Oral Implants Res,2011,22(7):735
[16] Frost H M. A 2003 update of bone physiology and Wolff′s Law for clinicians[J]. Angle Orthodontist,2004,74(1):3
[17] 运新跃,高平.牙种植体的三维有限元研究进展[J]. 天津医科大学学报,2004(s1):176

相似文献/References:

备注/Memo

备注/Memo:
作者简介 苏毅(1982-),女,主治医师,硕士在读,研究方向:口腔修复学及口腔种植材料;
通信作者:吴陈炫,E-mail: wcxwu001@126.com。
更新日期/Last Update: 2021-05-30