|本期目录/Table of Contents|

[1]陆 军,董浩然,郑旭媛.焦虑环境增加大鼠内侧前额叶皮层LFPs功能连接[J].天津医科大学学报,2018,24(04):277-280】.
 LU Jun,DONG Hao-ran,ZHENG Xu-yuan.Anxiogenic environment enhances rat’s LFPs functional connection in the mPFC[J].Journal of Tianjin Medical University,2018,24(04):277-280】.
点击复制

焦虑环境增加大鼠内侧前额叶皮层LFPs功能连接(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年04期
页码:
277-280】
栏目:
出版日期:
2018-07-20

文章信息/Info

Title:
Anxiogenic environment enhances rat’s LFPs functional connection in the mPFC
作者:
陆 军董浩然郑旭媛
天津医科大学生物医学工程学院,天津300070
Author(s):
LU JunDONG Hao-ranZHENG Xu-yuan
School of Biomedical Engineering,Tianjin Medical University, Tianjin 300070, China
关键词:
高架十字迷宫内侧前额叶皮层局部场电位功能连接焦虑大鼠
Keywords:
elevated plus mazemedial prefrontal cortexlocal field potentialsfunctional connectivityanxietyrats
分类号:
R3
DOI:
-
文献标志码:
摘要:
目的:研究焦虑环境对大鼠内侧前额叶皮层局部场电位(LFPs)功能连接的影响。方法:应用清醒动物在体植入微电极阵列记录技术,分别记录8只成年SD大鼠在熟悉环境和高架十字迷宫10 min内前额叶皮层16通道LFPs,利用短时傅里叶变换(STFT)计算LFPs时频能量密度,应用定向传递函数(DTF)计算功能连接强度。结果:LFPs时频能量集中在theta(4~12 Hz)频段,在熟悉环境和焦虑环境时theta频段能量密度分别为10.653±0.173和12.581±0.345(P<0.05);theta频段LFPs的DTF值分别为0.022±0.001和0.031±0.002(P<0.05)。在焦虑环境时的theta频段能量密度和功能连接强度较熟悉环境时显著增加。结论:焦虑环境会增加大鼠内侧前额叶皮层LFPs的功能连接。
Abstract:
Objective: To explore the effect of anxiogenic environment on local field potentials (LFPs) functional connection in the medial prefrontal cortex (mPFC) in rats. Methods: By using extracelluar multi-electrode array in vivo animal, 16-channel LFPs were recorded from mPFC when eight rats were exposed to familiar environment and an elevated plus maze (EPM) for 10 minutes, and then the frequency power spectrum was calculated by short time fourier transform (STFT) and functional connectivity by directed transform function (DTF) among LFPs. Results: The LFPs time frequency power spectrum were concentrated in theta band (4-12 Hz). The powers of theta band were 10.653±0.173 and 12.581±0.345 (P<0.05) in the familiar environment and EPM, respectively. Theta band LFPs functional connectivity was 0.022±0.001 and 0.031±0.002 (P<0.05) in the familiar environment and EPM, respectively. Theta band energy density and functional connectivity were significantly increased in anxiogenic environment. Conclusion: LFPs functional connectivity in rats could be enhanced in the mPFC during exposure to anxiogenic environment.

参考文献/References:


[1] Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century[J]. Dialogues Clin Neurosci, 2015,17(3):327
[2] Goes T C, Antunes F D, Teixeirasilva F. Environmental enrichment for adult rats: effects on trait and state anxiety[J]. Neurosci Lett,2015, 584:93
[3] Adhikari A. Distributed circuits underlying anxiety[J]. Front Behav Neurosci,2014, 8(8):112
[4] Leuner B, Shors T J. Stress, anxiety, and dendritic spines: what are the connections[J]. Neuroscience, 2013, 251(15):108
[5] Jacinto L R, Cerqueira J J, Nuno S. Patterns of Theta Activity in Limbic Anxiety Circuit Preceding Exploratory Behaviorin Approach-Avoidance Conflict[J]. Front Behav Neurosci, 2016, 10:171
[6] Park H J, Friston K. Structural and functional brain networks: from connections to cognition[J]. Science, 2013, 342(6158):1238411
[7] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3):1059
[8] Saiyudthong S, Pongmayteegul S, Marsden C A, et al. Anxiety-like behaviour and c-fos expression in rats that inhaled vetiver essential oil[J]. Nat Prod Res, 2015, 29(22):2141
[9] Costa N S, Vicente M A, Cipriano A C, et al. Functional lateralization of the medial prefrontal cortex in the modulation of anxiety in mice: Left or right[J]. Neuropharmacology, 2016, 108:82
[10] Zarrindast M R, Khakpai F. The Modulatory Role of Dopamine in Anxiety-like Behavior[J]. Arch Iran Med, 2015, 18(9):591
[11] Chocyk A, Majcher-Ma■lanka I, Dudys D, et al. Impact of early-life stress on the medial prefrontal cortex functions-a search for the pathomechanisms of anxiety and mood disorders[J]. Pharmacol Rep,2013, 65(6):1462
[12] Adhikari A, Topiwala M A, Gordon J A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety[J]. Neuron, 2010, 65(2):257
[13] Pagliaccio D, Luby J L, Bogdan R, et al. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation[J]. J Abnorm Psychol,2015,124(4):817
[14] Hakamata Y, Komi S, Moriguchi Y, et al. Amygdala-centred functional connectivity affects daily cortisol concentrations: a putative link with anxiety[J]. Sci Rep, 2017,7(1):8313
[15] Paceschott E F, Zimmerman J P, Bottary R M, et al. Resting state functional connectivity in primary insomnia, generalized anxiety disorder and controls[J]. Psychiatry Res, 2017,265:26
[16] Tovote P, Fadok J P, LüThi A. Neuronal circuits for fear and anxiety[J].Nat Rev Neurosci, 2015, 16(6):317
[17] Adhikari A, Lerner T N, Finkelstein J, et al. Basomedial amygdala mediates top-down control of anxiety and fear[J]. Nature, 2015, 527(7577):179
[18] Stujenske J M, Likhtik E, Topiwala M A,et al. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala[J]. Neuron, 2014, 83(4):919

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-07-20