|本期目录/Table of Contents|

[1]高红叶,褚新雷,李艳霞,等.人SRGAP1蛋白结构和功能预测[J].天津医科大学学报,2017,23(05):389-393.
 GAO Hong-ye,CHU Xin-lei,LI Yan-xia,et al.Structural and Functional prediction of SRGAP1 in human[J].Journal of Tianjin Medical University,2017,23(05):389-393.
点击复制

人SRGAP1蛋白结构和功能预测(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
23卷
期数:
2017年05期
页码:
389-393
栏目:
基础医学
出版日期:
2017-09-20

文章信息/Info

Title:
Structural and Functional prediction of SRGAP1 in human
文章编号:
1006-8147(2017)05-0389-05
作者:
高红叶褚新雷李艳霞郑 红
(天津医科大学肿瘤医院肿瘤流行病与生物统计研究室,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津 300060)
Author(s):
GAO Hong-ye CHU Xin-lei LI Yan-xia ZHENG Hong
( Department of Cancer Epidemiology and Biostatistics, Cancer Institute and Hospital,Tianjin Medical University ,National Clinical Research Center for Cancer, Tianjin? Key Laboratory of Cancer Prevention and Therapy, Tianjins Clinical Research Center for Cancer, Tianjin 300060,China)
关键词:
Slit-Robo GTP 酶激活蛋白1生物信息学 结构功能
Keywords:
Slit-Robo GTPase activator protein 1 bioinformatics structure function
分类号:
Q811.4
DOI:
-
文献标志码:
A
摘要:

目的: 利用生物信息学对人Slit-Robo GTP 酶激活蛋白1(SRGAP1) 蛋白质的理化性质,信号肽,亲水性/疏水性,跨膜区域,蛋白质二级结构、三级结构,蛋白质间的相互作用及GO注释进行预测分析。方法:使用多种分析软件对SRGAP1蛋白进行在线预测分析。结果:SRGAP1理化性质分析结果显示,人SRGAP1 蛋白有1 085个氨基酸,等电点为6.36;生物信息学预测分析结果显示,SRGAP1无信号肽,无跨膜结构的亲水不稳定蛋白质。二级结构存在19个α螺旋和11个β折叠,预测到10个与SRGAP1存在相互作用的蛋白。SRGAP1蛋白在调控GTP酶活性,细胞迁移,信号通路中有重要的作用。结论:系统预测分析了等电点为6.36的人SRGAP1蛋白理化性质、结构和功能,为将来探索SRGAP1具体功能和分子机制提供了一定的思路和理论基础。

?

Abstract:
Objective: To analyze the physical and chemical properties and structural functions of human Slit-Robo GTPase activator protein 1 (SRGAP1) by bioinformatics. Methods: SRGAP1 was predicted and analyzed by multiple analysis software online. Results: SRGAP1 protein was composed of 1 085 amino acids, with isoelectric point of 6.36. Predictive results suggested that it was a hydrophilic and unstable protein without signal peptide and transmembrane domain. The secondary structure predictive analysis showed that it contained 19 α-helices and 11 β-sheets. Ten proteins interacted with SRGAP1 were predicted. SRGAP1 played an important role in the regulation of small GTPase activity, cell migration and signal transduction. Conclusion:These results may provide some ideas and theoretical basis for further exploration of SRGAP1 functional studies and molecular mechanisms.

参考文献/References:

[1]Braisted J E, Ringstedt T, O’leary D D. Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon[J].Cereb Cortex,2009,19(Suppl 1):i144
[2]Qiu H, Zhu J, Yu J, et al. SLIT2 is epigenetically silenced in ovarian cancers and suppresses growth when activated[J].Asian Pac J Cancer Prev,2011,12(3):791
[3]Coutinho-Budd J, Ghukasyan V, Zylka M J, et al. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently[J].J Cell Sci,2012,125(Pt 14):3390
[4]Ma Y, Mi Y J, Dai Y K, et al. The inverse F-BAR domain protein srGAP2 acts through srGAP3 to modulate neuronal differentiation and neurite outgrowth of mouse neuroblastoma cells[J].PLoS One,2013,8(3):e57865
[5]Carlson B R, Lloyd K E, Kruszewski A, et al. WRP/srGAP3 facilitates the initiation of spine development by an inverse F-BAR domain, and its loss impairs long-term memory[J].J Neurosci,2011,31(7):2447
[6]He H, Bronisz A, Liyanarachchi S, et al. SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility[J].J Clin Endocrinol Metab,2013,98(5):E973
[7]Surakka I, Whitfield J B, Perola M, et al. A genome-wide association study of monozygotic twin-pairs suggests a locus related to variability of serum high-density lipoprotein cholesterol[J].Twin Res Hum Genet,2012,15(6):691
[8]Saitsu H, Osaka H, Sugiyama S, et al. Early infantile epileptic encephalopathy associated with the disrupted gene encoding Slit-Robo Rho GTPase activating protein 2 (SRGAP2)[J].Am J Med Genet A,2012,158A(1):199
[9]Al-Hakim A K, Bashkurov M, Gingras A C, et al. Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture[J].Mol Cell Proteomics,2012,11(6):M111.014233.
[10]Dennis M Y, Nuttle X, Sudmant P H, et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication[J]. Cell,2012,149(4):912
[11]Li X, Chen Y, Liu Y, et al. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway[J].J Biol Chem,2006,281(38):28430
[12]Rolland Y, Marighetti P, Malinverno C, et al. The CDC42-interacting protein 4 controls epithelial cell cohesion and tumor dissemination[J].Dev Cell,2014,30(5):553
[13]Navarro-Lérida I, Pellinen T, Sanchez S A, et al. Rac1 nucleocytoplasmic shuttling drives nuclear shape changes and tumor invasion[J].Dev Cell,2015,32(3):318
[14]Insall R H, Machesky L M. Actin dynamics at the leading edge: from simple machinery to complex networks[J].Dev Cell,2009,17(3):310
[15]Fantin A, Lampropoulou A, Gestri G, et al. NRP1 regulates CDC42 activation to promote filopodia formation in endothelial tip cells[J].Cell Rep,2015,11(10):1577
[16]Lee S, Craig B T, Romain C V, et al. Silencing of CDC42 inhibits neuroblastoma cell proliferation and transformation[J].Cancer Lett,2014,355(2):210
[17]Wong K, Ren X R, Huang Y Z, et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway[J].Cell,2001,107(2):209
[18]Yamazaki D, Itoh T, Miki H, et al. srGAP1 regulates lamellipodial dynamics and cell migratory behavior by modulating Rac1 activity[J].Mol Biol Cell,2013,24(21):3393
[19]Wang Q, Navarro M V, Peng G, et al. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin[J].Proc Natl Acad Sci U S A,2009,106(31):12700
[20]Rittinger K, Walker P A, Eccleston J F, et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP[J].Nature,1997,388(6643):693

相似文献/References:

[1]李 伟,王兆松,董秋萍,等.肺鳞癌中miR-144靶基因预测及其生物信息学分析[J].天津医科大学学报,2018,24(04):287.
 LI Wei,WANG Zhao-song,DONG Qiu-ping,et al.Bioinformatic analysis and prediction of miR-144 target genes in lung squamous cell carcinoma[J].Journal of Tianjin Medical University,2018,24(05):287.
[2]柴慈曼,杨绍时.乳腺癌他莫昔芬耐药相关基因及通路的筛选[J].天津医科大学学报,2018,24(06):501.
 CHAI Ci-man,YANG Shao-shi.Identification of keygenes and pathwaysoftamoxifen-resistancein breast cancer[J].Journal of Tianjin Medical University,2018,24(05):501.
[3]王世霞,杨艳芳,马 宁,等.基于芯片数据的雌激素受体阳性乳腺癌他莫昔芬耐药相关基因分析[J].天津医科大学学报,2019,25(01):32.
 WANG Shi-xia,YANG Yan-fang,MA Ning,et al.Bioinformatics analysis of key genes for tamoxifen resistancein estrogen receptor positive breast cancer[J].Journal of Tianjin Medical University,2019,25(05):32.
[4]余 冬,冯 霜,李 俊,等.MiR-199a-3p在胰腺癌中的表达水平及生物信息学分析[J].天津医科大学学报,2019,25(02):119.
 YU Dong,FENG Shuang,LI Jun,et al.The expression of miR-199a-3p in pancreatic cancer and bioinformatics analysis[J].Journal of Tianjin Medical University,2019,25(05):119.
[5]柴慈曼 综述,杨绍时 审校.生物信息学辅助研究乳腺癌转移相关lncRNA进展[J].天津医科大学学报,2021,27(01):90.
[6]杨倩玉,李璇,闫蓓蕾,等.通过生物信息学分析鉴定调控神经母细胞瘤骨髓转移的中枢基因[J].天津医科大学学报,2021,27(03):259.
 YANG Qian-yu,LI Xuan,YAN Bei-lei,et al.Identification of hub genes to regulate neuroblastoma metastasis to bone marrow by bioinformatics analysis[J].Journal of Tianjin Medical University,2021,27(05):259.
[7]程雅静,刘莹,王菲.基于生物信息学方法筛选散发性克雅氏病神经炎症相关关键基因[J].天津医科大学学报,2022,28(01):1.
 CHENG Ya-Jing,LIU Ying,WANG Fei.Identification of hub genes related to neuroinflammation of sporadic Creutzfeldt-Jakob disease by integrated bioinformatics analysis[J].Journal of Tianjin Medical University,2022,28(05):1.

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(81470153)
作者简介 高红叶(1989-),女,硕士在读,研究方向:生物化学与分子生物学;

- 通信作者:郑红,E-mail:zhengh1964@163.com

更新日期/Last Update: 2017-09-20