|本期目录/Table of Contents|

[1]刘炳旺,马 英,李彬寒,等.胆固醇酯转运蛋白抑制剂的分子设计[J].天津医科大学学报,2016,22(02):122-125.
 LIU Bing-wang,MA Ying,LI Bin-han,et al.Designing novel inhibitors by targeting cholesteryl ester transfer protein[J].Journal of Tianjin Medical University,2016,22(02):122-125.
点击复制

胆固醇酯转运蛋白抑制剂的分子设计(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
22卷
期数:
2016年02期
页码:
122-125
栏目:
基础医学
出版日期:
2016-03-20

文章信息/Info

Title:
Designing novel inhibitors by targeting cholesteryl ester transfer protein
文章编号:
1006-8147(2016)02-0122-04
作者:
?刘炳旺12马 英1李彬寒1王润玲1
?(1.天津医科大学药学院,天津市临床药物关键技术重点实验室,天津300070;2.天津医科大学肿瘤医院分子影像及核医学诊疗科,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津 300060)
Author(s):
?LIU Bing-wang12MA Ying1LI Bin-han1WANG Run-ling1
(1.School of Pharmacy, Tianjin Medical University, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Tianjin 300070, China;2.Department of Molecular Imaging and Nuclear Medicine,Tianjin Medical University Cancer Institute and Hospital,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy ,Tianjin 300060, China )
关键词:
胆固醇酯转运蛋白抑制剂药物设计分子对接
Keywords:
cholesteryl ester transfer protein inhibitors computer aid design drug molecular docking

' target="_blank" rel="external">" />

分类号:
R914.2
DOI:
-
文献标志码:
A
摘要:
目的:设计针对胆固醇酯转运蛋白(CETP)的抑制剂,提高其降低血脂水平,为以后相关疾病的治疗提供科学的方法和依据。方法:以现有torcetrapib抑制剂为模板,利用Schrodinger Suite 2009软件中的“Core Hopping”模块进行修饰,对修饰后的结构用“Core Hopping”模块改造结构;利用Schrodinger Suite2009中的Glide模块对druglike数据库中10万个化合物进行高通量虚拟筛选,得到结构进行修饰。利用Glide模块对所建立的化合物库进行虚拟筛选。应用Qikprop模块做ADME(吸收、分布、代谢、排泄)预测来推测这些化合物的成药可能性。结果:torcetrapib结构进行修饰,得到8个较好的化合物;通过对druglike数据库进行高通量虚拟筛选得到1个化合物-ZINC26608950,修饰后得到6个化合物。用分子对接方法分析了新抑制剂和CETP的相互作用机制,与现有的抑制剂torcetrapib相比有更好的结合能力。通过ADME预测得出设计出的化合物均符合类药5原则。结论:通过两种方法得到14个CETP抑制剂,分子对接初步证明其可以抑制CETP,此为CETP抑制剂的结构改造及活性测定奠定了基础。
Abstract:
Objective: To develop highly active cholesteryl ester transfer protein(CETP )novel inhibitors to facilitate further research. Methods: In this study, torcetrapib was modified by means of ‘core hopping’; the small molecule drug-like database was screened by Glide of Schrodinger Suite 2009 and then was modified. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists could have high potential to become drug candidates. Results: Eight compounds were discovered to inhibit CETP based on torcetrapib by means of ‘core hopping’; One CETP inhibitor- ZINC26608950 was discovered by high throughput virtual screening, and 6 compounds were discovered to inhibit CETP based on ZINC26608950. It was observed by docking that these novel inhibitors had more favorable conformation for binding to the receptor than torcetrapib. It was predicted that the values for these novel candidates were all within the reasonable ranges. Conclusion: The binding affinity of the designed molecules is theoretically higher than the torcetrapib in CETP. And the new inhibitors may become potential drug hits.

参考文献/References:

[1] Zhang L, Yan F, Zhang S, et al. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein [J]. Nat Chem Biol, 2012, 8(4): 342

[2] Bishop BM. Systematic review of CETP inhibitors for increasing high-density lipoprotein cholesterol: where do these agents stand in the approval process? [J] Am J Ther, 2015,22(2): 147

[3] Chapman MJ, Wilfried LG, Guerin M, et al. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors [J]. Eur Heart J, 2010, 31(2): 149

[4] Barter PJ, Brewer HBJR, Chapman MJ, et al. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2003, 23(2): 160

[5] Ding YY,et al. Functional and association studies of the cholesteryl ester transfer protein (CETP) gene in a Wannan Black pig model[J]. Anim Genet, 2015,46(6): 702

[6] Morton RE, Izem L. Modification of CETP function by changing its substrate preference: a new paradigm for CETP drug design[J]. J Lipid Res, 2015, 56(3): 612

[7] 杨征, 邱敏. 丹参酮 IIA 的心血管作用及机制研究进 [J]. 中国动脉硬化杂志, 2011, 19(4): 372

[8] Collins HL, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE transgenic mice expressing CETP[J]. Atherosclerosis, 2015,244: 29

[9] Miyosawa K,et al. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism[J]. Am J Physiol Endocrinol Metab, 2015,309(2): 177

[10] Jeenduang N,et al.Studies of the CETP TaqIB and ApoE Polymorphisms in Southern Thai Subjects with the Metabolic Syndrome[J]. Biochem Genet, 2015,53(7-8): 184

[11] Hitchcock E,et al. A novel microdeletion affecting the CETP gene raises HDL-associated cholesterol levels[J]. Clin Genet, 2015,1

[12] Greene DJ, Izem L, Morton RE.Defective triglyceride biosynthesis in CETP-deficient SW872 cells[J]. J Lipid Res, 2015,56(9): 1669

[13] Shenping Liu, AnilMistry, Jennifer M,et al. Crystal structures of cholesteryl ester transfer protein incomplex with inhibitors[J]. The journal of biological chemistry, 2015, 287(44): 37321

[14] Oostenbrink C, Soares TA,VanderVegt NF,et al.Validation of the 53A6 GROMOS force field [J]. Eur Biophys J, 2005,34(4): 273

[15] Halgren TA, Murphy RB, Friesner R A, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening [J]. J Med Chem,2004, 47(7): 1750

[16] Irwin JJ ,Shoichet BK. ZINC--a free database of commercially available compounds for virtual screening [J]. J Chem Inf Model, 2005,45 :177

[17] 洪渊.基质金属蛋白酶及其抑制剂的分子对接研究 [D].吉林:吉林大学,2007

[18] Morehouse LA, Sugarman ED, Bourassa P-A, et al. Inhibition of CETP activity by torcetrapib reduces susceptibility to diet-induced atherosclerosis in NZW rabbits[J].J Lipid Res, 2007,48:1263

相似文献/References:

备注/Memo

备注/Memo:
作者简介 刘炳旺(1981-),男,硕士在读,研究方向:计算机辅助药物设计;通信作者:王润玲,E-mail: wangrunling@tijmu.edu.cn。
更新日期/Last Update: 2016-03-23