[1]马阔,韩广业,李泽宇,等.基于网络药理学及分子对接探讨金钱草治疗良性前列腺增生症的作用机制[J].天津医科大学学报,2025,31(02):105-110.
MA Kuo,HAN Guangye,LI Zeyu,et al.Exploring the mechanism of the treatment of benign prostatic hyperplasia by Lysimachia christinae using network pharmacology and molecular docking[J].Journal of Tianjin Medical University,2025,31(02):105-110.
点击复制
基于网络药理学及分子对接探讨金钱草治疗良性前列腺增生症的作用机制(PDF)
《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]
- 卷:
-
31卷
- 期数:
-
2025年02期
- 页码:
-
105-110
- 栏目:
-
网络药理学专题
- 出版日期:
-
2025-03-20
文章信息/Info
- Title:
-
Exploring the mechanism of the treatment of benign prostatic hyperplasia by Lysimachia christinae using network pharmacology and molecular docking
- 文章编号:
-
1006-8147(2025)02-0105-06
- 作者:
-
马阔; 韩广业; 李泽宇; 张冠英; 李园园
-
(新乡医学院第一附属医院泌尿外科,新乡453100)
- Author(s):
-
MA Kuo; HAN Guangye; LI Zeyu; ZHANG Guanying; LI Yuanyuan
-
(Department of Urology,The First Affiliated Hospital of Xinxiang Medical College,Xinxiang 453100,China)
-
- 关键词:
-
金钱草; 良性前列腺增生症; 网络药理学; 分子对接; 作用机制
- Keywords:
-
Lysimachia christinae; benign prostatic hyperplasia; network pharmacology; molecular docking; mechanism of action
- 分类号:
-
R697+.3
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
目的:通过网络药理学及分子对接探讨金钱草治疗良性前列腺增生症(BPH)的作用机制。方法:查询中药系统药理学数据库与分析平台(TCMSP)筛选金钱草的药物成分,使用靶点预测数据库(Swiss Target Prediction)预测药物成分的作用靶点;运用人类基因数据库(GeneCards)获取BPH的疾病靶点,利用venny 2.1获取交集靶点。使用STRING进行蛋白-蛋白相互作用(PPI)分析并使用Cytoscape构建网络图,利用Metascape进行基因本体富集(GO)和京都基因与基因组百科全书富集(KEGG)分析。使用Cytoscape软件制作“药物-靶点-通路”的网络图。结果:数据分析后得到金钱草的效成分8个,调节多条通路、干预65个疾病靶点以治疗BPH,其中槲皮素、山奈酚、异鼠李素、金合欢素等是金钱草的核心成分,蛋白激酶B(Akt 1)、丝裂原活化蛋白激酶(MAPK)1、TP53、BCL2是金钱草治疗BPH的核心靶点。基因富集结果显示相关的生物过程主要涉及对激素反应、细胞对脂质反应、腺发育、对缺氧反应、对氧气反应、对类固醇激素反应、程序性细胞死亡正调控、凋亡正向调节、对活性氧反应等;细胞组分主要涉及转录调控复合体、小窝、质膜筏、膜筏、膜微区、囊腔和RNA聚合酶Ⅱ转录调控复合物等;分子功能主要涉及核受体活性、配体激活转录因子活性、转录共调节因子结合、转录辅激活子结合、核类固醇受体活性、雌激素反应元件结合、一般转录起始因子结合、类固醇结合、RNA聚合酶Ⅱ一般转录起始因子结合和腺苷三磷酸酶结合等。通路富集分析结果提示金钱草主要通过晚期糖基化终末产物-晚期糖基化终末产物受体(AGE-RAGE)、磷脂酰肌醇3激酶(PI3K)-Akt、低氧诱导因子(HIF)-1等信号通路调节BPH。结论:金钱草的多个成分能够调节多个靶蛋白,并调控多条信号通路而治疗BPH。
- Abstract:
-
Objective:To explore the mechanism of the treatment of benign prostatic hyperplasia (BPH)by Lysimachia christinae using network pharmacology and molecular docking. Methods:Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) was queried to screen the drug constituents of Lysimachia christinae,and Swiss Target Prediction was used to predict the action target of drug constituents. GeneCards was used to obtain disease targets for BPH,and venny 2.1 was used to ob-tain intersection targets. Protein-protein interaction (PPI) analysis was performed using STRING and network diagram was constructed using Cytoscape. Gene Ontology Enrichment (GO) and Kyoto Encyclopedia of Genes and Genomes Enrichment (KEGG) analysis was performed using Metascape. A drug-target-pathway network map was constructed using Cytoscape software. Results:The 8 active components of Lysimachia christinaewere identified,interveningin 65 disease targets in the treatment of BPH through multiple pathways.Quercetin,kaempferol,isorhamnetin,and acacetin were the core components of Lysimachia christinae,while AKT1,MAPK1,TP53,BCL2 were critical targets of Lysimachia christinae for treating BPH. The results of gene enrichment analysis showed that the biological processes most likely related to intersection genes mainly involved the response to hormones,cell response to lipids,glandular development,response to hypoxia,response to oxygen levels,response to steroid hormones,positive regulation of programmed cell death,positive regulation of apoptosis process,response to reactive oxygen species,etc. The cell components mainly involved transcriptional regulatory complex,fossa,plasma membrane raft,membrane raft,membrane microregion,capsule cavity,RNA polymerase Ⅱ transcriptional regulatory complex,etc. The molecular functions mainly involved nuclear receptor activity,ligand-activated transcription factor activity,transcription coregulatory factor binding,transcription coactivator binding,nuclear steroid receptor activity,estrogen response element binding,general transcription start factor binding,steroid binding,RNA polymerase Ⅱ general transcription start factor binding,adenosine triphosphatase binding,etc. The results of pathway enrichment analysis suggested that Lysimachia christinae regulated BPH mainly through AGE-RAGE,PI3K-AKT,HIF-1 and other signaling pathways. Conclusion:Multiple components of the Lysimachia christinae can regulate multiple target proteins and regulate multiple signaling pathways in the treatment of BPH.
参考文献/References:
[1] 曾宪涛,翁鸿.中国良性前列腺增生症经尿道等离子双极电切术治疗指南(2018简化版)[J]. 现代泌尿外科杂志,2018,23(9):651-654,704.
[2] 郑入文,蒋静,宁艳哲,等. 中医对良性前列腺增生的认识及治疗现状[J]. 世界中医药,2017,12(8):1974-1978.
[3] 孙松,王继升,徐少强,等. 良性前列腺增生中西医诊治策略的对比[J]. 时珍国医国药,2021,32(3):693-695.
[4] LIANG C Z,LI H J,WANG Z P,et al. Treatment of chronic prostatitis in Chinese men[J]. Asian J Androl,2009,11(2):153-156.
[5] 郭俊,杜冠潮,赵丰,等. 基于VOSviewer与CiteSpace的良性前列腺增生中医药研究现状与趋势的知识图谱分析[J]. 世界科学技术-中医药现代化,2021,23(6):1902-1908.
[6] 董兴,陈继峰. 前列腺增生诊疗的研究进展[J]. 中国当代医药,2021,28(23):45-48.
[7] 胡雷,傅全胜,陈栋,等. 选择性α-受体阻滞剂治疗良性前列腺增生症下尿路症状对男性射精功能影响的Meta分析[J]. 中山大学学报(医学科学版),2014,35(6):941-949.
[8] 孙自学,李鹏超. 中医药治疗良性前列腺增生症研究进展[J]. 中华中医药杂志,2018,33(6):2482-2484.
[9] 孙自学,宋春生,邢俊平,等. 良性前列腺增生中西医结合诊疗指南(试行版)[J]. 中华男科学杂志,2017,23(3):280-285.
[10] 国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海:上海科学技术出版社,1999:454.
[11] 国家药典委员会. 中华人民共和国药典:2020 年版一部[M]. 北京:中国医药科技出版社,2020:229-230.
[12] 易港,王钦正,符方智,等. 谭新华治疗良性前列腺增生用药规律分析[J]. 中医药临床杂志,2022,34(8):1490-1494.
[13] 刘永存,赵会谢,刘国伟. 针刺配合翁沥通胶囊治疗良性前列腺增生的疗效观察[J]. 上海针灸杂志,2024,43(5):549-554.
[14] 巩瑛杰,张奇,朱玉新,等. 益肾化瘀方药联合盐酸坦索罗辛治疗良性前列腺增生的Meta分析[J]. 中国新药杂志,2024,33(9):942-951.
[15] 吕璞,陆永辉,国文豪,等. 陆永辉分层针刺任脉经穴治疗良性前列腺增生临床经验[J]. 中国针灸,2024,44(5):569-573.
[16] 巩瑛杰,于润泽,朱玉新,等. 基于“络病理论”辨治良性前列腺增生[J]. 中国中医基础医学杂志,2024,30(3):541-544.
[17] 王世桢,王彬,徐洪胜,等. 李海松教授从瘀、虚论治良性前列腺增生症经验[J]. 中国男科学杂志,2022,36(3):105-108.
[18] 杨九天,郭军,高庆和,等. 基于“脑-心-肾-精室”轴理论探讨良性前列腺增生症的生物学基础[J]. 世界中西医结合杂志,2024, 19(6):1251-1255.
[19] 李广森,高大伟,常德贵. 基于络病学说探讨良性前列腺增生症的病机及治疗[J]. 中国男科学杂志,2023,37(4):97-100.
[20] 王洋. 金钱草活性成分及药理作用研究[D]. 青海师范大学,2018.
[21] 周祎,郜红利. HPLC-DAD法同时测定中药金钱草中6种活性成分的含量[J]. 中国药师,2016,19(8):1609-1611.
[22] SHENG J,YANG Y,CUI Y,et al. M2 macrophage-mediated interleukin-4 signalling induces myofibroblast phenotype during the progression of benign prostatic hyperplasia[J]. Cell Death Dis,2018, 9(7):755.
[23] JIANG H,FAN D,ZHOU G,et al. Phosphatidylinositol 3-kinase inhibitor(LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vitro[J]. J Exp Clin Cancer Res,2010,29(1):34.
[24] 金鹏,王荫槐,彭佑共,等. PI3K/AKT抑制剂对前列腺增生的影响及机制研究[J]. 中华男科学杂志,2010,16(12):1068-1075.
[25] SAITO M,TSOUNAPI P,OIKAWA R,et al. Prostatic ischemia induces ventral prostatic hyperplasia in the SHR;possible mechanism of development of BPH[J]. Sci Rep,2014,4:3822.
[26] GAO X,HU W,QIAN D,et al. The mechanisms of ferroptosis under hypoxia[J]. Cell Mol Neurobiol. 2023,43(7):3329-3341.
[27] DU J,XU R,HU Z,et al. PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells[J]. PLoS One,2011,6(9):e25213.
[28] REN H,LI X,CHENG G,et al. The effects of ROS in prostatic stromal cells under hypoxic environment[J]. Aging Male,2015,18(2):84-88.
[29] 林富祥,张汉文,赖沛宝,等. 大鼠前列腺慢性缺血引起前列腺增生及碱性成纤维细胞生长因子和缺氧诱导因子-1α蛋白表达上调[J]. 汕头大学医学院学报,2013,26(4):197-199.
[30] RUDOLFSSON S H,BERGH A. Testosterone-stimulated growth of the rat prostate may be driven by tissue hypoxia and hypoxia-inducible factor-1alpha[J]. J Endocrinol,2008,196(1):11-19.
相似文献/References:
[1]李晓石,李世宾,刘芬.基于网络药理学研究茵陈治疗良性前列腺增生症的作用机制[J].天津医科大学学报,2023,29(06):604.
LI Xiao-shi,LI Shi-bin,LIU Fen.Study of the mechanism of oriental wormwood in the treatment of benign prostatic hyperplasia based on network pharmacology[J].Journal of Tianjin Medical University,2023,29(02):604.
备注/Memo
- 备注/Memo:
-
基金资助 河南省医学科技攻关计划联合共建项目(LHGJ20220607)
作者简介:马阔(1991-),男,主治医师,硕士,研究方向:泌尿系肿瘤、前列腺疾病、泌尿系结石及性功能障碍的微创手术治疗及全程诊治管理;通信作者:马阔,E-mail:976536268@qq.com。
更新日期/Last Update:
2025-03-20