|本期目录/Table of Contents|

[1]张慕军,王银松,王洪湘,等.高效液相色谱法测定药物中的哌啶羧酸类化合物[J].天津医科大学学报,2025,31(01):78-84.[doi:10.20135/j.issn.1006-8147.2025.01.0078]
 ZHANG Mujun,WANG Yinsong,WANG Hongxiang,et al.Determination of pipecolic acids and their derivatives in drug substance by High Performance Liquid Chromatography[J].Journal of Tianjin Medical University,2025,31(01):78-84.[doi:10.20135/j.issn.1006-8147.2025.01.0078]
点击复制

高效液相色谱法测定药物中的哌啶羧酸类化合物(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年01期
页码:
78-84
栏目:
技术与方法
出版日期:
2025-01-20

文章信息/Info

Title:
Determination of pipecolic acids and their derivatives in drug substance by High Performance Liquid Chromatography
文章编号:
1006-8147(2025)01-0078-07
作者:
张慕军123王银松1王洪湘2臧慧敏2宫雪2
(1.天津医科大学药学院,天津市临床药物关键技术重点实验室,天津 300070;2.天津药物研究院原料药研发中心,天津 300000;3.中国医学科学院药物代谢新技术创新单元,北京 100730)
Author(s):
ZHANG Mujun123WANG Yinsong1WANG Hongxiang2 ZANG Huimin2 GONG Xue2
(1.School of Pharmacy,Tianjin Medical University,Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics,Tianjin 300070,China;2. Active Pharmaceutical Ingredient Research Center,Tianjin Institute of Pharmaceutical Research, Tianjin 300000,China;3.Research Unit for Drug Metabolism,Chinese Academy of Medical Sciences,Beijing 100730,China)
关键词:
高效液相色谱法24-二硝基氟苯哌啶羧酸柱前衍生
Keywords:
HPLC 24-dinitrofluorobenzene pipecolic acid pre-column derivatization
分类号:
R917
DOI:
10.20135/j.issn.1006-8147.2025.01.0078
文献标志码:
A
摘要:
目的:建立高效液相色谱法(HPLC)测定药物中的哌啶羧酸类化合物(PADs)的通用方法。方法:采用2,4-二硝基氟苯(DNFB)作为衍生试剂,使用以十八烷基硅烷键合硅胶为填充剂的色谱柱,0.1%磷酸水和乙腈为流动相进行梯度洗脱,紫外检测器,外标法定量。结果:PADs在不同溶剂中,定量限~3倍限度浓度范围内线性关系均良好,r均大于0.999;定量限回收率均在85%~110%,且相对标准偏差(RSD)均小于4%,50%~200%限度浓度的回收率均在90%~108%,且RSD均小于3%;检测限均小于0.03 μg/mL(相当于供试品溶液浓度的0.007 5%),定量限均小于0.08 μg/mL(相当于供试品溶液浓度的0.020%)。结论:该HPLC方法灵敏度高、通用性强、准确度高,可以作为测定药物中PADs的通用方法。
Abstract:
Objective: To establish a novel High Performance Liquid Chromatography(HPLC) method for the determining pipecolic acids and their derivatives(PADs) in drug substance. Methods: 2,4-dinitrofluorobenzene(DNFB) was used as a derivative reagent, chromatographic column with octadecylsilane bonded silica gel as the filler was used. And water containing 0.1% phosphoric acid-acetonitrile system was utilized as a mobile phase with UV detector, and external standard method was used to quantity. Results: All PADs in different solvents had good linear relationship in between the range of the limit of quantitation(LOQ) to 300% with respect to specification limit, and all the linear correlation coefficients(r) were greater than 0.999. The spiked recoveries of LOQ were all between 85% and 110%, and relative standard deviation(RSDs) were all less than 4%. The spiked recoveries of 50% to 200% with respect to specification limit were all between 90% and 108%, and RSDs were all less than 3%. The limit of detection(LODs) were all less than 0.03 μg/mL(0.007 5% with respect to the concentration of the sample solution), LOQs were all less than 0.08 μg/mL(0.020% with respect to the concentration of the sample solution). Conclusion: This HPLC method has high sensitivity, strong universality, and high accuracy, which can be used as a universal method for quantitative determining PADs in drug substance.

参考文献/References:

[1] MAKARIAN M, GONZALEZ M, SALVADOR S M, et al. Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors[J]. J Mol Struct, 2022, 1247: 131425.
[2] LI Y, TANG F, MENG C, et al. Progress in the synthesis and appli-cation of nipecotic acid and its derivatives[J]. Chinese J Org Chem, 2009, 29(7): 1068.
[3] MOHAPATRA S, BHAKTA S, BARAL N, et al. Synthetic application of pipecolic acid[J]. Res Chem Intermediat, 2015, 41: 4545-4553.
[4] SEMERAROM, MURACA M, CATESINI G, et al. Determination of plasma pipecolic acid by an easy and rapid liquid chromatography-tandem mass spectrometry method[J]. Clin Chim Acta, 2015, 440: 108-112.
[5] RASHEDM S, AL-AHAIDIBL Y, ABOUL-ENEINH Y, et al. Determination of L-pipecolic acid in plasma using chiral liquid chromatography-electrospray tandem mass spectrometry[J]. Clin Chem, 2001, 47(12): 2124-2130.
[6] YU K, LIU H, KACHROO P. Pipecolic acid quantification using gas chromatography-coupled mass spectrometry[J]. Bio Protocol, 2020, 10(23): e3841-e3841.
[7] HUTZLER J, DANCIS J. The determination of pipecolic acid: method and results of hospital survey[J]. Clin Chim Acta, 1983, 128(1): 75-82.
[8] LAWRENCE J M, HERRICK H E, COAHRAN D R. Determination of pipecolic acid by thin-layer chromatography[J]. Anal Biochem, 1973, 53(1):317-320.
[9] GOVAERTS L, TRIJBELS F, MONNENS L, et al. Pipecolic acid levels in serum and urine from neonates and normal infants: compar-ison with values reported in Zellweger syndrome[J]. J Inherit Metab Dis, 1985, 8: 87-91.
[10] FRAMPTON G A C, ZAVAREH H S.Process for preparing levobu-pivacaine and analogues thereof:AU,19950037049[P].2024-04-25.
[11] ANTONSEN S, MONSEN E B, OVCHINNIKOV K, et al. Synthesis of the enantiomers of thioridazine[J]. Syn Open,2020, 4(1): 12-16.
[12] ATTUR M G, PATEL R, THAKKER G, et al. Differential anti-inflammatory effects of immunosuppressive drugs: cyclosporin, ra-pamycin and FK-506 on inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and PGE 2 production[J]. Inflamm Res, 2000, 49: 20-26.
[13] PEILLERON L, CARIOU K. Synthetic approaches towards avibactam and other diazabicyclooctane β-lactamase inhibitors[J]. Org Biomol Chem, 2020, 18(5): 830-844.
[14] XU F, SHERRY B D, BLIZZARD T A. Discovery and chemical development of relebactam: a potent β-lactamase inhibitor in co-mbination with primaxinR for the treatment of serious and antibiotic-resistant bacterial infections, complete accounts of integrated drug discovery and development: recent examples from the pharmaceutical industry volume 3[M]. Washington, DC: American Chemical Society, 2020: 253-284.
[15] ZHANG J, ZHANG P, LIU X, et al. Synthesis and biological evaluation of(R)-N-(diarylmethylthio/sulfinyl) ethyl/propyl-piperidine-3-carboxylic acid hydrochlorides as novel GABA uptake inhibitors[J]. Bioorg Med Chem Lett, 2007, 17(13): 3769-3773.
[16] ZAKNOEN S L. Use of FPT inhibitors and at least two antineoplastic agents in the treatment of cancer:MX. 2004PA05425[P]. 2024-09-25.
[17] ANTHONY N J, BERGMAN J M, DESOLMS S J,et al. Inhibitors of farnesyl-protein transferase:ZA, 19950008162[P]. 2024-09-25.
[18] DHAR T G M, POTIN D, MAILLET M J B,et al. Spiro-hydantoin compounds useful as anti-inflammatory agents:US, 10262182[P]. 2024-09-25.
[19] STANISZEWSKA R, FICHNA J, GACH K, et al. Synthesis and biological activity of endomorphin-2 analogs incorporating piperidine-2-, 3-or 4-carboxylic acids instead of proline in position 2[J]. Chem Biol Drug Des, 2008, 72(1): 91-94.
[20] SA?覵AT K, WI■CKOWSKA A, WI■CKOWSKI K, et al. Synthesis and pharmacological properties of new GABA uptake inhibitors[J]. Pharmacol Rep, 2012, 64(4): 817-833.
[21] HASSNER A, NAMBOOTHIRI I. Organic syntheses based on name reactions: a practical guide to 750 transformations[M]. Elsevier, Oxford: Elsevier Science Ltd. 2012: 415-476.
[22] DEWANGAN Y, BERDIMURODOV E, VERMA D K. Amino acids: classification, synthesis methods, reactions, and determination[M]. Elsevier,Vienna: Springer Vienna, 2023: 3-23.
[23] SEMERARO M, MURACA M, CATESINI G, et al. Determination of plasma pipecolic acid by an easy and rapid liquid chromatography-tandem mass spectrometry method[J]. Clin Chim Acta, 2015, 440: 108-112.
[24] ARMBRUSTER D A, PRY T. Limit of blank, limit of detection and limit of quantitation[J]. Clin Bio Chem, 2008, 29:49-52.
[25] BROWN P N, LISTER P. Current initiatives for the validation of analytical methods for botanicals[J]. Curr Opin Biotech, 2014, 25: 124-128.
[26] MCINTIRE F C, CLEMENTS L M, SPROULL M. 1-Fluoro-2,4-dinitrobenzene as quantitative reagent for primary and secondary amines[J]. Anal Chem, 1953, 25(11): 1757-1758.

相似文献/References:

[1]王姿婧,刘 青,戴学文,等.硝苯地平分散片的质量控制[J].天津医科大学学报,2013,19(06):502.
 WANG Zi-jing,LIU Qing,DAI Xue-wen,et al.Quality control of nifedipine dispersible tablets[J].Journal of Tianjin Medical University,2013,19(01):502.
[2]郑艳红,杨金荣,董伟林,等.HPLC法测定妊娠妇女绒毛组织中亚硫酸盐的含量[J].天津医科大学学报,2014,20(02):159.
[3]董宪凤,冯鑫,周晶,等.舒筋定痛胶囊的质量控制研究[J].天津医科大学学报,2014,20(03):252.
[4]戴学文,王姿婧,刘 青,等.复方更昔洛韦眼用凝胶剂制备及质量控制[J].天津医科大学学报,2014,20(06):490.
 DAI Xue-wen,WANG Zi-jing,LIU Qing,et al.Preparation and content determination of compound ganciclovir ophthalmic gel[J].Journal of Tianjin Medical University,2014,20(01):490.
[5]张 薇,姚 璐. 简化测定藿香正气水中3种成分的含量[J].天津医科大学学报,2015,21(02):180.
[6]刘怡欣,赛 娜,赵世晶,等. 高效液相色谱法测血清中25-羟维生素D3 [J].天津医科大学学报,2015,21(04):348.
[7]崔 博,黄国伟,王 璇,等.高效液相色谱法测定高尿酸血症动物模型饲料中嘌呤的含量[J].天津医科大学学报,2015,21(06):530.
[8]赵亚绘,王彦竹,宋丽明,等.丁酸氯维地平注射乳剂中依地酸二钠的含量测定[J].天津医科大学学报,2016,22(01):73.
 ZHAO Ya-hui,WANG Yan-zhu,SONG Li-ming,et al.Determination of EDTA-2Na in clevidipine butyrate injectable emulsion[J].Journal of Tianjin Medical University,2016,22(01):73.
[9]李 晗,李继斌,邢正英,等.复方阿托伐他汀依折麦布胶囊的质量控制[J].天津医科大学学报,2016,22(01):76.
 LI Han,LI Ji-bing,XING Zheng-ying,et al.Quality control of compound atorvastatin and ezetimibe capsule[J].Journal of Tianjin Medical University,2016,22(01):76.
[10]上官可可,李美珍,杨金荣,等.复方呋塞米螺内酯胶囊质量控制方法的研究[J].天津医科大学学报,2016,22(01):80.
 SHANGGUAN Ke-ke,LI Mei-zhen,YANG Jin-rong,et al.Study of the quality control of the compound furosemide and spironolactone capsules[J].Journal of Tianjin Medical University,2016,22(01):80.

备注/Memo

备注/Memo:
作者简介:张慕军(1983-),男,副研究员,硕士,研究方向:药学;通信作者:王银松,E-mail: wangyinsong@tmu.edu.cn。
更新日期/Last Update: 2025-02-10