[1] JIA G, DEMARCO V G, SOWERS J R. Insulin resistance and hyper-insulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol,2016,12(3): 144-153.
[2] DILLMANN W H. Diabetic cardiomyopathy[J]. Circ Res,2019,124(8): 1160-1162.
[3] SHIMABUKURO M, ZHOU Y T, LEVI M, et al. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes[J]. Proc Natl Acad Sci U S A,1998. 95(5): 2498-2502.
[4] HARDY S, LANGELIER Y, PRENTKI M. Oleate activates phosphatidylinositol 3 kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects[J]. Cancer Res,2000,60(22): 6353-6358.
[5] LISTENBERGER L L, SCHAFFER J E. Mechanisms of lipoapoptosis: implications for human heart disease[J]. Trends Cardiovasc Med,2002,12(3): 134-138.
[6] ZHU S, JIAO W, XU Y, et al. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway[J]. Life Sci,2021, 286: 120046.
[7] WANG F, WANG J, LIANG X, et al. Ghrelin inhibits myocardial pyroptosis in diabetic cardiomyopathy by regulating ERS and NLRP3 inflammasome crosstalk through the PI3K/AKT pathway[J]. J Drug Target,2024,32(2): 148-158.
[8] SINGH R, LETAI A, SAROSIEK K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[J]. Nat Rev Mol Cell Biol,2019, 20(3): 175-193.
[9] DEL RE D P, AMGALAN D, LINKERMANN A,et al. Fundamental mechanisms of regulated cell death and implications for heart disease[J]. Physiol Rev,2019,99(4): 1765-1817.
[10] LOPASCHUK G D, USSHER J R, FOLMES C D,et al. Myocardial fatty acid metabolism in health and disease[J]. Physiol Rev,2010, 90(1): 207-258.
[11] ALLIBARDI S, CHIERCHIA S L, MARGONATO V, et al. Effects of trimetazidine on metabolic and functional recovery of postischemic rat hearts[J]. Cardiovasc Drugs Ther,1998,12(6): 543-549.
[12] HAMDAN M, URIEN S, LE LOUET H,et al. Inhibition of mito-chondrial carnitine palmitoyltransferase-1 by a trimetazidine deri-vative, S-15176[J]. Pharmacol Res,2001, 44(2): 99-104.
[13] GUARNIERI C, MUSCARI C.Beneficial effects of trimetazidine on mitochondrial function and superoxide production in the cardiac muscle[J]. Cardiovasc Drugs Ther,1990, 4 (Suppl 4): 814-815.
[14] VEITCH K, MAISIN L, HUE L. Trimetazidine effects on the damage to mitochondrial functions caused by ischemia and reperfusion[J]. Am J Cardiol,1995. 76(6): 25B-30B.
[15] GUARNIERI C, MUSCARI C. Beneficial effects of trimetazidine on mitochondrial function and superoxide production in the cardiac muscle of monocrotaline-treated rats[J]. Biochem Pharmacol,1988, 37(24): 4685-4688.
[16] MORILLAS BLASCO P J, HERN?魣NDIZ MARTINEZ A, AZOR?魱N VILLENA I, et al. Mitochondrial changes induced by trimetazidine in the myocardium[J]. Med Sci Monit,2005,11(6): BR162- BR167.
[17] MONTEIRO P, DUARTE A I, GON?覶ALVES L M, et al. Protective effect of trimetazidine on myocardial mitochondrial function in an ex-vivo model of global myocardial ischemia[J]. Eur J Pharmacol,2004. 503(1-3): 123-128.
[18] MORIN D, ELIMADI A, SAPENA R, et al. Evidence for the existence of
[3H]-trimetazidine binding sites involved in the regulation of the mitochondrial permeability transition pore[J]. Br J Pharmacol,1998,123(7): 1385-1394.
[19] KUZMICIC J, PARRA V, VERDEJO H E, et al. Trimetazidine pre-vents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes[J]. Biochem Pharmacol,2014. 91(3): 323-336.
[20] CHEN Y, HUA Y, LI X, et al. Distinct types of cell death and the implication in diabetic cardiomyopathy[J]. Front Pharmacol,2020, 11: 42.
[21] WEI J, ZHAO Y, LIANG H,et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy[J]. Acta Pharm Sin B,2022,12(1): 1-17.
[22] LU Q B, DING Y, LIU Y, et al. Metrnl ameliorates diabetic cardiomyopathy via inactivation of cGAS/STING signaling dependent on LKB1/AMPK/ULK1-mediated autophagy[J]. J Adv Res,2023, 51: 161-179.
[1]于金宝,王勇强,崔尧丽,等.zVAD-fmk对大鼠肾缺血再灌注损伤的保护作用[J].天津医科大学学报,2014,20(02):89.
YU Jin-bao,WANG Yong-qiang,CUI Yao-li,et al. Protective effects of z-VAD-FMK on renal ischemia-reperfusion injury in rat[J].Journal of Tianjin Medical University,2014,20(01):89.
[2]马淑晶,张晓燕,徐亚洁,等.青蒿琥酯通过上调神经酰胺抑制肝星状细胞增殖并诱导其凋亡[J].天津医科大学学报,2014,20(04):253.
MA Shu-jing,ZHANG Xiao-yan,XU Ya-jie,et al.Artesunate inhibits the proliferation of hepatic stellate cells and induces apoptosis by upregulating ceramide[J].Journal of Tianjin Medical University,2014,20(01):253.
[3]呼沛然,李萌璐,杨 欢,等.体外实验中缺氧对中性粒细胞凋亡的影响[J].天津医科大学学报,2014,20(06):0.
HU Pei-ran,LI Meng-lu,YANG Huan,et al. Effects of hypoxia on apoptosis of neutrophils in vitro [J].Journal of Tianjin Medical University,2014,20(01):0.
[4]呼沛然,李萌璐,杨 欢,等.体外实验中缺氧对中性粒细胞凋亡的影响[J].天津医科大学学报,2014,20(06):426.
HU Pei-ran,LI Meng-lu,YANG Huan,et al. Effects of hypoxia on apoptosis of neutrophils in vitro [J].Journal of Tianjin Medical University,2014,20(01):426.
[5]周岩,宋伟杰,张飞,等.人附睾蛋白4在乳腺癌发生发展中的机制研究[J].天津医科大学学报,2015,21(06):466.
ZHOU Yan,SONG Wei-jie,ZHANG Fei,et al.Mechanism of human epididymis protein 4 in development and progression of breast cancer[J].Journal of Tianjin Medical University,2015,21(01):466.
[6]黄环静综述,冯玉梅审校.NF-κB信号通路促进乳腺癌细胞增殖和转移机制的研究进展[J].天津医科大学学报,2016,22(03):270.
[7]任 杰 综述,刘原君,刘全忠 审校.沙眼衣原体对宿主细胞抑癌基因p53影响的研究进展[J].天津医科大学学报,2016,22(06):544.
[8]刘超,韦苏,张琨玮,等.缺氧预适应诱导人脐静脉内皮细胞释放的微囊泡对正常H9c2细胞的作用[J].天津医科大学学报,2018,24(02):101.
LIU Chao,WEI Su,ZHANG Kun-wei,et al.Effects of hypoxia preconditioning induced human umbilical vein endothelial cells microvesicles on normal H9c2 cells[J].Journal of Tianjin Medical University,2018,24(01):101.
[9]吴锦欢,陈玉平,李 磊,等.ATR抑制剂VX-970对CPT诱导的结肠癌细胞生长的影响[J].天津医科大学学报,2018,24(05):376.
WU Jin-huan,CHEN Yu-ping,LI Lei,et al.Effect of ATR inhibitor VX-970 on the growth of colorectal cancer cell induced by CPT[J].Journal of Tianjin Medical University,2018,24(01):376.
[10]刘元媛,曹晓沧.不同生物活性材料对间充质干细胞功能影响的比较[J].天津医科大学学报,2018,24(05):409.
LIU Yuan-yuan,CAO Xiao-cang.Comparison of the effects of different bioactive materials on mesenchymal stem cells[J].Journal of Tianjin Medical University,2018,24(01):409.