|本期目录/Table of Contents|

[1]沈明灿,王颖,魏瑞华,等.富马酸二甲酯对Th17细胞体外分化调节作用的研究[J].天津医科大学学报,2025,31(01):25-29,35.[doi:10.20135/j.issn.1006-8147.2025.01.0025]
 SHEN Mingcan,WANG Ying,WEI Ruihua,et al.The regulation of dimethyl fumarate in the differentiation of Th17 cells in vitro[J].Journal of Tianjin Medical University,2025,31(01):25-29,35.[doi:10.20135/j.issn.1006-8147.2025.01.0025]
点击复制

富马酸二甲酯对Th17细胞体外分化调节作用的研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年01期
页码:
25-29,35
栏目:
基础医学
出版日期:
2025-01-20

文章信息/Info

Title:
The regulation of dimethyl fumarate in the differentiation of Th17 cells in vitro
文章编号:
1006-8147(2025)01-0025-06
作者:
沈明灿王颖魏瑞华粘红
(天津医科大学眼科医院、眼视光学院、眼科研究所,国家眼耳鼻喉疾病临床医学研究中心天津市分中心,天津市视网膜功能与疾病重点实验室,天津300384)
Author(s):
SHEN Mingcan WANG Ying WEI Ruihua NIAN Hong
(Tianjin Medical University Eye Hospital, School of Ophthalmology and Optometry, Institute of Ophthalmology, Tianjin Branch of National Clinical Medical Research Center for Ophthalmology and Otorhinolaryngology, Tianjin Key Laboratory of Retinal Function and Diseases, Tianjin 300384, China)
关键词:
甲酯辅助性T细胞17分化RORγtIL-23R
Keywords:
dimethyl fumarate Th17 cells differentiation RORγt IL-23R
分类号:
R771.3
DOI:
10.20135/j.issn.1006-8147.2025.01.0025
文献标志码:
A
摘要:
目的:探讨富马酸二甲酯(DMF)对小鼠体外诱导分化的辅助性T细胞17(Th17)的抑制作用。方法:从C57BL/6J小鼠全身淋巴结和脾脏中获取淋巴细胞,采用免疫磁珠技术分选出Na?觙ve CD4+ T细胞,在细胞因子作用下定向诱导分化为Th17细胞,建立Th17细胞体外诱导分化模型。实验分组设置为:对照组、5 μmol/L DMF组、15 μmol/L DMF组、25 μmol/L DMF组。流式细胞术检测各组中Th17细胞的比率,qRT-PCR检测各组视黄酸受体相关孤儿受体γt(RORγt)、白细胞介素-17A(IL-17A)、白细胞介素-23受体(IL-23R)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、γ-干扰素(IFN-γ)、T辅助细胞分化转录因子(T-bet)和叉头框蛋白P3(FOXP3) mRNA的相对表达量,ELISA法检测各组IL-17A的蛋白表达量。结果:CD4+ T细胞阳性分选率约为93%;流式细胞术检测结果显示,与对照组相比,DMF处理后Th17细胞比率显著降低,25 μmol/L DMF组抑制作用最显著(t=5.227,P<0.01),且呈剂量依赖性,并且在25 μmol/L DMF给药浓度下对细胞活性没有影响;qRT-PCR结果分析显示,25 μmol/L DMF组中RORγt、IL-17A、IL-23R、GM-CSF和IFN-γ的mRNA相对表达量均低于对照组(t=4.061,P<0.05;t=4.701,P<0.01; t=19.18, P<0.000 1;t=19.18,P<0.05;t=2.870,P<0.05),而两组中T-bet和FOXP3 mRNA表达量差异无统计学意义(t=0.105、 0.731 9, 均P>0.05);ELISA法检测结果显示,与对照组相比,25 μmol/L DMF组的IL-17A浓度显著降低(t=4.786,P<0.01)。结论:DMF可能通过抑制RORγt与IL-17A、IL-23R、GM-CSF、IFN-γ的表达,进而抑制Na?觙ve CD4+ T细胞向Th17细胞分化的能力与Th17细胞的致病功能。
Abstract:
Objective: To investigate the inhibitory effect of dimethyl fumarate (DMF) on the differentiation of helper T cells 17 (Th17) in vitro. Methods: Lymphocytes were obtained from the systemic lymph nodes and spleens of C57BL/6J mice. Na?觙ve CD4+ T cells were sorted by immunomagnetic beads and induced to differentiate into Th17 cells under the action of cytokines, and the induction differentiation model of Th17 cells was established in vitro. The experiment was divided into control group, 5 μmol/L DMF group, 15 μmol/L DMF group and 25 μmol/L DMF group. The ratio of Th17 cells in each group was detected by flow cytometry. The relative expression of retinoic acid receptor-related orphan receptor gamma-t(RORγt), interleukin-17A(IL-17A), interleukin-23 receptor (IL-23R),granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), T-box expressed in T cells (T-bet) and forkhead box protein P3 (FOXP3) mRNA in each group was detected by qRT-PCR. The protein expression of IL-17A in each group was detected by ELISA. Results: The positive sorting rate of CD4+ T cells was about 93%. The results of flow cytometry showed that compared with the control group, the ratio of Th17 cells was significantly decreased after DMF treatment, and the inhibitory effect of 25 μmol/L DMF was the most significant(t=5.227, P<0.01) in a dose-dependent manner. There was no effect on cell activity at 25 μmol/L DMF concentration. The results of qRT-PCR analysis showed that the relative mRNA expression of RORγt, IL-17A, IL-23R, GM-CSF and IFN-γ in the 25 μmol/L DMF group were significantly lower than those in the control group, and the difference was statistically significant (t=4.061, P<0.05; t=4.701, P<0.01; t=19.18, P<0.000 1; t=19.18,P<0.05;t=2.870,P<0.05, respectively), but there was no significant difference in the expression of T-bet and FOXP3 mRNA between the two groups(t=0.105、0.7319, both P>0.05). The results of ELISA showed that the concentration of IL-17 A in the 25 μmol/L DMF group was significantly lower than that in the control group(t=4.786,P<0.01). Conclusion: DMF may inhibit the differentiation of Na?觙ve CD4+T cells into Th17 cells and the pathogenic function of Th17 cells by inhibiting the expression of RORγt, IL-17A, IL-23R, GM-CSF and IFN-γ.

参考文献/References:

[1] MILLS K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1): 38-54.
[2] RODR?魱GUEZ-CARRIO J, NUCERA V, MASALA I F, et al. Be-h?觭et disease: from pathogenesis to novel therapeutic options[J]. Pharmacol Res, 2021, 167: 105593.
[3] CHEN Y H, LIGHTMAN S, CALDER V L. CD4+ T-Cell plasticity in non-infectious retinal inflammatory disease[J]. Int J Mol Sci, 2021, 22(17): 9584.
[4] VERSTAPPEN G M, CORNETH O B J, BOOTSMA H, et al. Th17 cells in primary Sj?觟gren′s syndrome: pathogenicity and plasticity[J]. J Autoimmun, 2018, 87: 16-25.
[5] WANG Y, MA X M, WANG X, et al. Emerging insights into the role of epigenetics and gut microbiome in the pathogenesis of Graves′ ophthalmopathy[J]. Front Endocrinol, 2021, 12: 788535.
[6] S?魣NCHEZ-GARC?魱A F J, P?魪REZ-HERN?魣NDEZ C A, RODR?魱-GUEZ-MURILLO M, et al. The role of tricarboxylic acid cycle metabolites in viral infections[J]. Front Cell Infect Microbiol, 2021, 11: 725043.
[7] MONTES DIAZ G, HUPPERTS R, FRAUSSEN J, et al. Dimethyl fumarate treatment in multiple sclerosis: recent advances in clinical and immunological studies[J]. Autoimmun Rev, 2018,17(12):1240-1250.
[8] MOSER T, AKG?譈N K, PROSCHMANN U, et al. The role of TH17 cells in multiple sclerosis: therapeutic implications[J]. Autoimmun Rev, 2020, 19(10): 102647.
[9] HOSSEINI A, MASJEDI A, BARADARAN B, et al. Dimethyl fumarate: regulatory effects on the immune system in the treatment of multiple sclerosis[J]. J Cell Physiol, 2019, 234(7): 9943-9955.
[10] MATTEO P, FEDERICO D, EMANUELA M, et al. New and old horizons for an ancient drug: pharmacokinetics, pharmacodynamics, and clinical perspectives of dimethyl fumarate[J]. Pharmaceutics, 2022, 14(12): 2732.
[11] MADDUR M S, MIOSSEC P, KAVERI S V, et al. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies[J]. Am J Pathol, 2012, 181(1): 8-18.
[12] KORN T, BETTELLI E, OUKKA M, et al. IL-17 and Th17 cells[J]. Annu Rev Immunol, 2009, 27: 485-517.
[13] PARODI B, ROSSI S, MORANDO S, et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS[J]. Acta Neuropathol (Berl), 2015, 130(2): 279-295.
[14] LABSI M, SOUFLI I, BELGUENDOUZ H, et al. Beneficial effect of dimethyl fumarate on experimental autoimmune uveitis is dependent of pro-inflammatory markers immunomodulation[J]. Inflammo-pharmacology, 2021, 29(5): 1389-1398.
[15] SULAIMANI J, CLUXTON D, CLOWRY J, et al. Dimethyl fumarate modulates the Treg-Th17 cell axis in patients with psoriasis[J]. Br J Dermatol, 2021, 184(3): 495-503.
[16] KOBAYASHI K, TOMIKI H, INABA Y, et al. Dimethyl fumarate suppresses Theiler’s murine encephalomyelitis virus-induced demyelinating disease by modifying the Nrf2-Keap1 pathway[J]. Int Immunol, 2015, 27(7): 333-344.
[17] CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol, 2009, 182(3): 1247-1252.
[18] IVANOV I I, MCKENZIE B S, ZHOU L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133.
[19] CAPONE A, VOLPE E. Transcriptional regulators of T helper 17 cell differentiation in health and autoimmune diseases[J]. Front Immunol, 2020, 11: 348.
[20] TAN J, LIU H, HUANG M, et al. Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation[J]. Cell Death Dis, 2020, 11(8): 697.
[21] KHANAM A, TREHANPATI N, SARIN S K. Increased interleukin-23 receptor (IL-23R) expression is associated with disease severity in acute-on-chronic liver failure[J]. Liver Int, 2019, 39(6): 1062-1070.
[22] GAFFEN S L, JAIN R, GARG A V, et al. IL-23-IL-17 immune axis: discovery, mechanistic understanding, and clinical testing[J]. Nat Rev Immunol, 2014, 14(9): 585-600.
[23] 吴怡媛, 陈思思, 杨超, 等. 白细胞介素-23受体过表达对实验性自身免疫性葡萄膜炎小鼠辅助性T细胞17/调节性T细胞平衡的影响[J]. 中华眼底病杂志, 2022, 38(5): 389-395.
[24] YASUDA K, TAKEUCHI Y, HIROTA K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297.
[25] CHEN Y, CHAUHAN S K, SHAO C, et al. IFN-γ-Expressing Th17 cells are required for development of severe ocular surface autoimmunity[J]. J Immunol, 2017, 199(3): 1163-1169.
[26] CHEN S, WANG J, ZHANG K, et al. LncRNA Neat1 targets NonO and miR-128-3p to promote antigen-specific Th17 cell responses and autoimmune inflammation[J]. Cell Death Dis, 2023, 14(9): 610.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:天津市教委科研计划自然科学重点项目(2023ZD018)
作者简介:沈明灿(1999-),男,硕士在读,研究方向:眼科学;通信作者: 粘红,E-mail:nianhong@126.com。
更新日期/Last Update: 2025-02-10