[1] MILLS K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23(1): 38-54.
[2] RODR?魱GUEZ-CARRIO J, NUCERA V, MASALA I F, et al. Be-h?觭et disease: from pathogenesis to novel therapeutic options[J]. Pharmacol Res, 2021, 167: 105593.
[3] CHEN Y H, LIGHTMAN S, CALDER V L. CD4+ T-Cell plasticity in non-infectious retinal inflammatory disease[J]. Int J Mol Sci, 2021, 22(17): 9584.
[4] VERSTAPPEN G M, CORNETH O B J, BOOTSMA H, et al. Th17 cells in primary Sj?觟gren′s syndrome: pathogenicity and plasticity[J]. J Autoimmun, 2018, 87: 16-25.
[5] WANG Y, MA X M, WANG X, et al. Emerging insights into the role of epigenetics and gut microbiome in the pathogenesis of Graves′ ophthalmopathy[J]. Front Endocrinol, 2021, 12: 788535.
[6] S?魣NCHEZ-GARC?魱A F J, P?魪REZ-HERN?魣NDEZ C A, RODR?魱-GUEZ-MURILLO M, et al. The role of tricarboxylic acid cycle metabolites in viral infections[J]. Front Cell Infect Microbiol, 2021, 11: 725043.
[7] MONTES DIAZ G, HUPPERTS R, FRAUSSEN J, et al. Dimethyl fumarate treatment in multiple sclerosis: recent advances in clinical and immunological studies[J]. Autoimmun Rev, 2018,17(12):1240-1250.
[8] MOSER T, AKG?譈N K, PROSCHMANN U, et al. The role of TH17 cells in multiple sclerosis: therapeutic implications[J]. Autoimmun Rev, 2020, 19(10): 102647.
[9] HOSSEINI A, MASJEDI A, BARADARAN B, et al. Dimethyl fumarate: regulatory effects on the immune system in the treatment of multiple sclerosis[J]. J Cell Physiol, 2019, 234(7): 9943-9955.
[10] MATTEO P, FEDERICO D, EMANUELA M, et al. New and old horizons for an ancient drug: pharmacokinetics, pharmacodynamics, and clinical perspectives of dimethyl fumarate[J]. Pharmaceutics, 2022, 14(12): 2732.
[11] MADDUR M S, MIOSSEC P, KAVERI S V, et al. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies[J]. Am J Pathol, 2012, 181(1): 8-18.
[12] KORN T, BETTELLI E, OUKKA M, et al. IL-17 and Th17 cells[J]. Annu Rev Immunol, 2009, 27: 485-517.
[13] PARODI B, ROSSI S, MORANDO S, et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS[J]. Acta Neuropathol (Berl), 2015, 130(2): 279-295.
[14] LABSI M, SOUFLI I, BELGUENDOUZ H, et al. Beneficial effect of dimethyl fumarate on experimental autoimmune uveitis is dependent of pro-inflammatory markers immunomodulation[J]. Inflammo-pharmacology, 2021, 29(5): 1389-1398.
[15] SULAIMANI J, CLUXTON D, CLOWRY J, et al. Dimethyl fumarate modulates the Treg-Th17 cell axis in patients with psoriasis[J]. Br J Dermatol, 2021, 184(3): 495-503.
[16] KOBAYASHI K, TOMIKI H, INABA Y, et al. Dimethyl fumarate suppresses Theiler’s murine encephalomyelitis virus-induced demyelinating disease by modifying the Nrf2-Keap1 pathway[J]. Int Immunol, 2015, 27(7): 333-344.
[17] CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol, 2009, 182(3): 1247-1252.
[18] IVANOV I I, MCKENZIE B S, ZHOU L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133.
[19] CAPONE A, VOLPE E. Transcriptional regulators of T helper 17 cell differentiation in health and autoimmune diseases[J]. Front Immunol, 2020, 11: 348.
[20] TAN J, LIU H, HUANG M, et al. Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation[J]. Cell Death Dis, 2020, 11(8): 697.
[21] KHANAM A, TREHANPATI N, SARIN S K. Increased interleukin-23 receptor (IL-23R) expression is associated with disease severity in acute-on-chronic liver failure[J]. Liver Int, 2019, 39(6): 1062-1070.
[22] GAFFEN S L, JAIN R, GARG A V, et al. IL-23-IL-17 immune axis: discovery, mechanistic understanding, and clinical testing[J]. Nat Rev Immunol, 2014, 14(9): 585-600.
[23] 吴怡媛, 陈思思, 杨超, 等. 白细胞介素-23受体过表达对实验性自身免疫性葡萄膜炎小鼠辅助性T细胞17/调节性T细胞平衡的影响[J]. 中华眼底病杂志, 2022, 38(5): 389-395.
[24] YASUDA K, TAKEUCHI Y, HIROTA K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297.
[25] CHEN Y, CHAUHAN S K, SHAO C, et al. IFN-γ-Expressing Th17 cells are required for development of severe ocular surface autoimmunity[J]. J Immunol, 2017, 199(3): 1163-1169.
[26] CHEN S, WANG J, ZHANG K, et al. LncRNA Neat1 targets NonO and miR-128-3p to promote antigen-specific Th17 cell responses and autoimmune inflammation[J]. Cell Death Dis, 2023, 14(9): 610.