|本期目录/Table of Contents|

[1]王晓楠,杜玮,郁春艳,等.儿童系统性红斑狼疮关键生物标志物的鉴定[J].天津医科大学学报,2025,31(01):10-18.[doi:10.20135/j.issn.1006-8147.2025.01.0010]
 WANG Xiaonan,DU Wei,YU Chunyan,et al.Identification of key biomarkers for childhood systemic lupus erythematosus[J].Journal of Tianjin Medical University,2025,31(01):10-18.[doi:10.20135/j.issn.1006-8147.2025.01.0010]
点击复制

儿童系统性红斑狼疮关键生物标志物的鉴定(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年01期
页码:
10-18
栏目:
生物信息学及网络药理学专题
出版日期:
2025-01-20

文章信息/Info

Title:
Identification of key biomarkers for childhood systemic lupus erythematosus
文章编号:
1006-8147(2025)01-0010-09
作者:
王晓楠12杜玮1郁春艳1邓为民1
(1.天津医科大学基础医学院免疫学系,国家教育部免疫微环境与疾病重点实验室,天津300070;2.天津市儿童医院检验科,天津300134)
Author(s):
WANG Xiaonan12 DU Wei1 YU Chunyan1 DENG Weimin1
(1.Department of Immunology,School of Basic Medical Sciences,Tianjin Medical University,Key Laboratory of Diseases and Microenvironment of Ministry of Education of China,Tianjin 300070,China;2.Department of Clinical Laboratory, Tianjin Children′s Hospital, Tianjin 300134,China)
关键词:
儿童系统性红斑狼疮风险评分模型TNFAIP6细胞凋亡细胞周期
Keywords:
childhood systemic lupus erythematosus risk score model TNFAIP6 apoptosis cell cycle
分类号:
Q939.91
DOI:
10.20135/j.issn.1006-8147.2025.01.0010
文献标志码:
A
摘要:
目的:基于生物信息数据库进行数据挖掘,探究儿童系统性红斑狼疮(cSLE)发生的关键基因并构建风险评分模型。方法:从基因数据库中提取cSLE数据,通过多种机器学习识别与cSLE发病相关的基因并构建风险评分模型。通过ELISA验证基因表达,并利用流式细胞术分析TNFAIP6对细胞凋亡和周期的影响。结果:TNFAIP6、B4GALT5、HLX、ANXA3和DYSF与cSLE发病相关,且对cSLE具有较强的诊断价值,其曲线下面积分别为:TNFAIP6:0.866、B4GALT5:0.891、HLX:0.914、ANXA3:0.878、DYSF:0.929。利用TNFAIP6和DYSF构建的风险评分模型能够有效诊断cSLE(曲线下面积:0.969)。与低风险组相比,中性粒细胞在高风险组中显著增加(t=268.5,P=0.009)。实验结果表明TNFAIP6在cSLE患者血清中高表达,且沉默其表达能够促进THP-1细胞凋亡和阻滞细胞周期。结论:利用TNFAIP6和DYSF构建的cSLE风险评分模型可有效识别cSLE;TNFAIP6可能是cSLE潜在的生物标志物。
Abstract:
Objective: To conduct data mining based on bioinformatics databases to explore key genes related to the occurrence of childhood systemic lupus erythematosus(cSLEs) and build a risk score model. Methods: cSLE-related data were obtained from the Gene Expression Comprehensive Database. Genes related to the onset of cSLE were identified through various machine learning methods and a risk score model was constructed. TNFAIP6 expression was verified by ELISA, and the effect of TNFAIP6 on cell apoptosis and cell cycle was analyzed by flow cytometry. Results: TNFAIP6, B4GALT5, HLX, ANXA3 and DYSF were related to the onset of cSLE and had strong diagnostic value for cSLE.Their areas under the curve were TNFAIP6: 0.866, B4GALT5: 0.891, HLX: 0.914, ANXA3: 0.878, DYSF: 0.929. The risk score model constructed using TNFAIP6 and DYSF could effectively diagnose cSLE(areas under the curve was 0.969). Neutrophil levels were significantly elevated in the high-risk group compared to the low-risk group(t=268.5, P=0.009). Experimental results showed that TNFAIP6 was highly expressed in the serum of cSLE patients, and its silencing might promote THP-1 cell apoptosis and arrest the cell cycle. Conclusion: The cSLE risk score model constructed using TNFAIP6 and DYSF can effectively identify cSLE; TNFAIP6 may be a potential biomarker for cSLE.

参考文献/References:

[1] CHARRAS A, SMITH E, HEDRICH C M. Systemic lupus erythema-tosus in children and young people[J]. Curr Rheumatol Rep, 2021, 23(3):20.
[2] SOLIMAN S A, HAQUE A, VANARSA K, et al. Urine ALCAM, PF4 and VCAM-1 surpass conventional metrics in identifying ne-phritis disease activity in childhood-onset systemic lupus erythema-tosus[J]. Front Immunol, 2022, 13:885307.
[3] MASSIAS J S, SMITH EMD, AL-ABADI E, et al. Clinical and laboratory characteristics in juvenile-onset systemic lupus erythematosus across age groups[J]. Lupus, 2020, 29(5):474-481.
[4] THORBINSON C, ONI L, SMITH E, et al. Pharmacological management of childhood-onset systemic lupus erythematosus[J]. Paediatr Drugs, 2016, 18(3):181-195.
[5] RADULESCU E, JAFFE A E, STRAUB R E, et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain[J]. Mol Psychiatry, 2020, 25(4):791-804.
[6] CHEN R, LIU X, JIN S, et al. Machine learning for drug-target interaction prediction[J]. Molecules, 2018, 23(9):2208.
[7] LI L, LI S. MiR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1[J]. Oncol Lett, 2018, 16(2):1715-1721.
[8] LV R, DUAN L, GAO J, et al. Bioinformatics-based analysis of the roles of basement membrane-related gene AGRN in systemic lupus erythematosus and pan-cancer development[J]. Front Immunol, 2023, 14:1231611.
[9] WU J, YANG W, LI H. An artificial neural network model based on autophagy-related genes in childhood systemic lupus erythematosus[J]. Hereditas, 2022, 159(1):34.
[10] LI Z, XIAO Y, ZHANG L. Application of procalcitonin, white blood cell count and neutrophil-to-lymphocyte ratio in the diagnosis of systemic lupus erythematosus with a bacterial infection[J]. Ann Palliat Med, 2020, 9(6):3870-3876.
[11] CARLI L, TANI C, VAGNANI S, et al. Leukopenia, lymphopenia, and neutropenia in systemic lupus erythematosus: prevalence and clinical impact——a systematic literature review[J]. Semin Ar-thritis Rheum, 2015, 45(2):190-194.
[12] RIVERO S J, DIAZ-JOUANEN E, ALARCON-SEGOVIA D. Lymphopenia in systemic lupus erythematosus. Clinical, diagnostic, and prognostic significance[J]. Arthritis Rheum, 1978, 21(3):295-305.
[13] JALLOULI M, FRIGUI M, MARZOUK S, et al. Infectious complications in systemic lupus erythematosus: a series of 146 patients[J]. Rev Med Interne, 2008, 29(8):626-631.
[14] XU L, ZHAO J, SUN Q, et al. Loss-of-function variants in SAT1 cause X-linked childhood-onset systemic lupus erythematosus[J]. Ann Rheum Dis, 2022, 81(12):1712-1721.
[15] NASCIMENTO D Q, DA SILVA I, LIMA C A D, et al. Expression of the miR-9-5p, miR-125b-5p and its target gene NFKB1 and TRAF6 in childhood-onset systemic lupus erythematosus(cSLE)[J]. Autoimmunity, 2022, 55(8):515-519.
[16] WANG J, DAI M, CUI Y, et al. Association of sbnormal elevations in IFIT3 with overactive cyclic GMP-AMP synthase/stimulator of interferon genes signaling in human systemic lupus erythematosus monocytes[J]. Arthritis Rheumatol, 2018, 70(12):2036-2045.
[17] XIAO N, WEI J, XU S, et al. cGAS activation causes lupus-like autoimmune disorders in a TREX1 mutant mouse model[J]. J Autoi-mmun, 2019, 100:84-94.
[18] ZHANG X, XUE J, YANG H, et al. TNFAIP6 promotes invasion and metastasis of gastric cancer and indicates poor prognosis of patients[J]. Tissue Cell, 2021, 68:101455.
[19] LI L, YANG L, CHEN X, et al. TNFAIP6 defines the MSC subpopulation with enhanced immune suppression activities[J]. Stem Cell Res Ther, 2022, 13(1):479.
[20] GU G, LV X, LIU G, et al. Tnfaip6 secreted by bone marrow-derived mesenchymal stem cells attenuates TNBS-induced colitis by modulating follicular helper T cells and follicular regulatory T cells balance in mice[J]. Front Pharmacol, 2021, 12:734040.
[21] DYER D P, SALANGA C L, JOHNS S C, et al. The anti-inflammatory protein TSG-6 regulates chemokine function by inhibiting chemokine/glycosaminoglycan interactions[J]. J Biol Chem, 2016, 291(24):12627-12640.
[22] SAEED M. Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets[J]. Immunogenetics, 2017, 69(5):295-302.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家重点研发计划(2021YFC2009300)
作者简介:王晓楠(1988-),女,技师,硕士,研究方向:免疫学;通信作者:邓为民,E-mail:dengweimin@tmu.edu.cn。
更新日期/Last Update: 2025-02-10