|本期目录/Table of Contents|

[1]李茗鹤,白楠,孙笑,等.GCLM调控肝细胞肝癌细胞增殖及机制研究[J].天津医科大学学报,2024,30(04):305-309.[doi:10.20135/j.issn.1006-8147.2024.04.0305]
 LI Minghe,BAI Nan,SUN Xiao,et al.Study on the regulation and mechanism of GCLM in cell proliferation of hepatocellular carcinoma cells[J].Journal of Tianjin Medical University,2024,30(04):305-309.[doi:10.20135/j.issn.1006-8147.2024.04.0305]
点击复制

GCLM调控肝细胞肝癌细胞增殖及机制研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年04期
页码:
305-309
栏目:
肿瘤疾病专题
出版日期:
2024-07-10

文章信息/Info

Title:
Study on the regulation and mechanism of GCLM in cell proliferation of hepatocellular carcinoma cells
文章编号:
1006-8147(2024)044-0305-05
作者:
李茗鹤白楠孙笑洪丹丹李咏梅
(天津医科大学基础医学院病原生物学系,天津300070)
Author(s):
LI MingheBAI NanSUN XiaoHONG DandanLI Yongmei
(Department of Pathogenic Biology,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China)
关键词:
GCLM肝细胞肝癌铜死亡
Keywords:
GCLMhepatocellular carcinomacuproptosis
分类号:
R735.7
DOI:
10.20135/j.issn.1006-8147.2024.04.0305
文献标志码:
A
摘要:
目的:探讨γ-谷氨酰半胱氨酸合成酶修饰亚基(GCLM)对肝细胞肝癌(HCC)细胞增殖的作用及机制。方法:利用GEPIA、HPA数据库分析HCC组织和正常肝组织中GCLM表达情况;构建GCLM稳定敲降的HCC细胞株;CCK-8、克隆形成实验检测细胞增殖水平;铜测定实验检测细胞铜离子水平;铜死亡激活实验检测GCLM对细胞铜死亡的影响。结果:与正常肝组织相比,HCC组织中GCLM mRNA(P<0.000 1)与蛋白表达水平明显升高;与对照组相比,GCLM敲降的MHCC97L细胞中GCLM的mRNA(F=255.20,P<0.001)与蛋白(F=50.77,P<0.01)表达水平下降;与对照组相比,GCLM敲降的MHCC97L细胞增殖减弱(F=42.79,P<0.01)、细胞克隆数量减少(F=1 102,P<0.001);与对照组相比,GCLM敲降的MHCC97L细胞内铜离子水平升高(t=12.03,P<0.001);与对照组相比,Elesclomol和CuCl2联合处理的MHCC97L细胞增殖减弱(F=46.42,P<0.001),Elesclomol或CuCl2单独处理的MHCC97L细胞增殖均无明显变化(F=2.17,P=0.17)。结论:HCC组织中GCLM表达水平升高,GCLM敲降通过促进铜死亡来减弱HCC细胞增殖。
Abstract:
Objective: To investigate the effect and underlying mechanism of γ-glutamate-cysteine ligase modifier subunit(GCLM) on cell proliferation in hepatocellular carcinoma(HCC) cells. Methods:GEPIA and HPA databases were used to assess GCLM expression levels in HCC and normal liver tissues. HCC cells line with stable GCLM knockdown were constructed. The cell proliferation levels were detected by CCK-8,and colony formation assays. The level of Cu2+ in cells was detected by copper assay. The effect of GCLM on cuproptosis was detected by the cuproptosis activation experiment. Results:Compared with normal liver tissues,GCLM mRNA(P<0.000 1) and protein was highly expressed in HCC. Compared with the control group,the GCLM mRNA(F=255.20,P<0.001) and protein(F=50.77,P<0.01) expression levels were decreased in MHCC97L cells with GCLM knockdown. Compared with the control group,MHCC97L cells with GCLM knockdown showed decreased proliferation(F=42.79,P<0.01) and reduced colony formation ability(F=1 102,P<0.001). Compared with the control cells,the Cu2+ level of was significantly increased(t=12.03,P<0.001) in MHCC97L cells with GCLM knockdown. When combined treatment with Elesclomol and CuCl2,the proliferation of MHCC97L cells were inhibited(F=46.42,P<0.001) compared to the control cells. However,there was no significant effect on MHCC97L cells proliferation using Elesclomol or CuCl2 alone(F=2.17,P=0.17). Conclusion:GCLM is highly expressed in HCC tissues. GCLM knockdown inhibits HCC cell proliferation by promoting cell cuproptosis.

参考文献/References:

[1] VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med,2019,380(15):1450-1462.
[2] SINGAL A G,LAMPERTICO P,NAHON P. Epidemiology and surveillance for hepatocellular carcinoma: new trends[J]. J Hepatol,2020,72(2):250-261.
[3] MCGLYNN K A,PETRICK J L,EL-SERAG H B. Epidemiology of hepatocellular carcinoma[J]. Hepatology,2021,73(Suppl 1):4-13.
[4] KUDO M,FINN R S,QIN S,et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. Lancet,2018, 391(10126):1163-1173.
[5] PINTO MARQUES H,GOMES DA SILVA S,DE MARTIN E,et al. Emerging biomarkers in HCC patients: current status[J]. Int J Surg,2020,82(s):70-76.
[6] HARRIS I S,TRELOAR A E,INOUE S,et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression[J]. Cancer Cell,2015,27(2):211-222.
[7] LLOVET J M,KELLEY R K,VILLANUEVA A,et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers,2021,7(1):6-33.
[8] WANG Y,DENG B. Hepatocellular carcinoma: molecular mechanism,targeted therapy,and biomarkers[J]. Cancer Metastasis Rev,2023,42(3):629-652.
[9] NAKAGAWA H,UMEMURA A,TANIGUCHI K,et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development[J]. Cancer Cell,2014,26(3):331-343.
[10] AKINYEMIJU T,ABERA S,AHMED M,et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global,regional,and national level: results from the global burden of disease study 2015[J]. Jama Oncol,2017,3(12):1683-1691.
[11] SCHULZE K,IMBEAUD S,LETOUZ?魪 E,et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet,2015,47(5):505-511.
[12] GUICHARD C,AMADDEO G,IMBEAUD S,et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma[J]. Nat Genet,2012,44(6):694-698.
[13] LLOVET J M,ZUCMAN-ROSSI J,PIKARSKY E,et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers,2016,2:16018-16069.
[14] LU S C. Regulation of glutathione synthesis[J]. Mol Aspects Med,2009, 30(1-2):42-59.
[15] BANSAL A,SIMON M C. Glutathione metabolism in cancer progression and treatment resistance[J]. J Cell Biol,2018,217(7):2291-2298.
[16] WANG S,WANG H,ZHU S,et al. Systematical analysis of ferroptosis regulators and identification of gclm as a tumor promotor and immunological biomarker in bladder cancer[J]. Front Oncol,2022,12:1040892-1040903.
[17] HAN Y W,XU S X,ZHANG J,et al. Cadmium promotes the binding and centrosomal translocation of CCDC85C and PLK4 via ROS-GCLM pathway to trigger centrosome amplification in colon cancer cells[J]. Toxicol Lett,2024,392:84-93.
[18] PENG F,LIAO M,QIN R,et al. Regulated cell death(rcd) in cancer: key pathways and targeted therapies[J]. Signal Transduct Target Ther,2022,7(1):286-351.
[19] CHEN L,MIN J,WANG F. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther,2022,7(1):378-394.
[20] KIM B E,NEVITT T,THIELE D J. Mechanisms for copper acquisition,distribution and regulation[J]. Nat Chem Biol,2008,4(3):176-185.
[21] PIERSON H,YANG H,LUTSENKO S. Copper transport and disease: what can we learn from organoids?[J]. Annu Rev Nutr,2019, 39:75-94.
[22] GE E J,BUSH A I,CASINI A,et al. Connecting copper and cancer: from transition metal signalling to metalloplasia[J]. Nat Rev Cancer,2022,22(2):102-113.
[23] TSVETKOV P,COY S,PETROVA B,et al. Copper induces cell death by targeting lipoylated TCA cycle proteins?[J]. Science,2022, 375(6586):1254-1261.
[24] QIAO L,ZHU G,JIANG T,et al. Self-destructive copper carriers induce pyroptosis and cuproptosis for efficient tumor immunotherapy against dormant and recurrent tumors[J]. Adv Mater,2024,36(8):e2308241.

相似文献/References:

[1]袁华尊,孙保存,赵秀兰,等.Amotl2促进肝细胞肝癌血管生成拟态及EMT形成[J].天津医科大学学报,2016,22(04):277.
 YUAN Hua-zun,SUN Bao-cun,ZHAO Xiu-lan,et al.Amotl2 promotes vasculogenic mimicry and epithelial-mesenchymal transition in hepatocellular carcinoma[J].Journal of Tianjin Medical University,2016,22(04):277.
[2]郑 鹏,李 强.BCLC-B期肝细胞肝癌治疗效果分析[J].天津医科大学学报,2016,22(05):421.
 ZHENG Peng,LI Qiang.Analysis of therapeutic effect on patients with BCLC -B hepatocellular carcinoma[J].Journal of Tianjin Medical University,2016,22(04):421.
[3]张宁,赵秀兰,李勇莉,等.Nrf2促进肝癌细胞的迁移与侵袭能力[J].天津医科大学学报,2020,26(05):408.
 ZHANG Ning,ZHAO Xiu-lan,LI Yong-li,et al.Nrf2 promotes the migration and invasion in hepatocellular carcinoma[J].Journal of Tianjin Medical University,2020,26(04):408.
[4]温鹏,韩玉娟,杨剑,等.肝细胞癌患者缩短普美显强化MRI检查中肝胆期时间的探索[J].天津医科大学学报,2022,28(04):433.
 WEN Peng,HAN Yu-juan,YANG Jian,et al.Exploration of shortening the duration of hepatobiliary phase in EOB enhanced MRI for patients with hepatocellular carcinoma[J].Journal of Tianjin Medical University,2022,28(04):433.

备注/Memo

备注/Memo:
基金项目:天津市教委科研计划项目(2022ZD055)
作者简介:李茗鹤(1998-),女,硕士在读,研究方向:病原生物学;
通信作者:李咏梅,E-mail:liym@tmu.edu.cn。
更新日期/Last Update: 2024-07-10