[1]黄玉凡,李晓青.胫骨注射和左心室注射乳腺癌细胞小鼠骨定植模型的研究[J].天津医科大学学报,2024,30(03):200-204.[doi:10.20135/j.issn.1006-8147.2024.03.0200]
HUANG Yufan,LI Xiaoqing.Tibial injection and left ventricular injection of breast cancer cells in a mouse model of bone colonization[J].Journal of Tianjin Medical University,2024,30(03):200-204.[doi:10.20135/j.issn.1006-8147.2024.03.0200]
点击复制
胫骨注射和左心室注射乳腺癌细胞小鼠骨定植模型的研究(PDF)
《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]
- 卷:
-
30卷
- 期数:
-
2024年03期
- 页码:
-
200-204
- 栏目:
-
肿瘤研究专题
- 出版日期:
-
2024-05-20
文章信息/Info
- Title:
-
Tibial injection and left ventricular injection of breast cancer cells in a mouse model of bone colonization
- 文章编号:
-
1006-8147(2024)03-0200-05
- 作者:
-
黄玉凡; 李晓青
-
(天津医科大学肿瘤医院肿瘤研究所生物化学与分子生物学研究室;国家肿瘤临床医学研究中心;天津市“肿瘤防治”重点实验室;天津市恶性肿瘤临床医学研究中心;乳腺癌防治教育部重点实验室,天津300060)
- Author(s):
-
HUANG Yufan; LI Xiaoqing
-
(Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Tianjin′s Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin Medical University Cancer Institute and Hospital Department of Biochemistry and Molecular Biology, Tianjin 300060, China)
-
- 关键词:
-
胫骨注射; 左心室注射; 骨定植
- Keywords:
-
tibial injection; ventricular injection; bone model
- 分类号:
-
R737.9
- DOI:
-
10.20135/j.issn.1006-8147.2024.03.0200
- 文献标志码:
-
A
- 摘要:
-
目的:探讨胫骨注射和左心室注射乳腺癌细胞构建小鼠骨定植模型的方法。方法:通过对野生型MDA-MB-231乳腺癌细胞进行慢病毒感染,构建稳定表达绿色荧光蛋白(GFP)和荧光素酶(LUC)的细胞株。将GFP+/LUC+标记的处于对数生长期的MDA-MB-231乳腺癌细胞分别以6×103个/只和1×105个/只接种BALB/c-nu/nu小鼠和NOD/SCID小鼠,构建胫骨注射模型和左心室注射模型。采用活体成像观察肿瘤细胞在活体小鼠体内的定植部位及分布情况;X线检测观察骨损伤的位置及程度;苏木素-伊红(HE)染色和广谱角蛋白(Pan CK)免疫组化染色定位骨中的肿瘤细胞。结果:经荧光显微镜及活细胞成像检测,表达GFP和LUC的慢病毒对MDA-MB-231细胞感染效率高达95%,且继续传代后GFP和LUC表达效率无明显减退,可用于后续实验。胫骨注射4 h后进行活体成像观察,结果显示小鼠右下肢胫骨出现LUC信号;左心室注射后立即进行活体成像观察,发现肿瘤细胞已循环至全身,表明已成功构建胫骨注射模型及左心室注射模型。30 d进行活体成像观察发现,胫骨注射模型和左心室注射模型腿部出现LUC信号,表明腿部有定植灶形成。X线结果也表明存在骨损伤。HE染色和Pan CK免疫组化染色证实胫骨注射MDA-MB-231乳腺癌细胞小鼠模型100%出现骨定植灶,定植率高,而左心室注射MDA-MB-231乳腺癌细胞小鼠模型仅20%出现骨定植灶。结论: 运用活体成像、X线等检测技术联合病理学分析评估胫骨注射及左心室注射乳腺癌细胞骨定植小鼠模型,可提高结果分析的准确性,能为乳腺癌转移机制研究、抗转移治疗等提供实验和理论依据。
- Abstract:
-
Objective: To investigate the methodology of constructing bone colonization model in mice by tibial injection and left ventricular injection of breast cancer cells. Methods:Cell lines stably expressing green fluorescent protein (GFP) and luciferase (LUC) were constructed by lentiviral infection of wild type MDA-MB-231 breast cancer cells. The GFP+/LUC+-labeled MDA-MB-231 breast cancer cells in logarithmic growth phase were inoculated into BALB/c-nu/nu mouse and NOD/SCID mouse at 6×103/pc and 1×105/pc, respectively, to construct tibial injection model and left ventricular injection model. In vivo imaging was used to observe the colonization site and distribution of tumor cells in living mouse; X-ray detection was used to observe the location and extent of bone damage; HE staining and pancytokeratin (Pan CK) immunohistochemical staining were used to localize tumor cells in bone. Results:As detected by fluorescence microscopy and live cell imaging, the lentivirus expressing GFP and LUC had an infection efficiency of up to 95% on MDA-MB-231 cells, and there was no obvious decrease in the expression efficiency of GFP and LUC after continued passaging, which could be used for subsequent experiments. In vivo imaging 4 hours after tibial injection showed that LUC signals appeared in the right lower limb tibia of the mouse; in vivo imaging immediately after left ventricular injection showed that the tumor cells had circulated throughout the body, which indicated that the tibial injection model and the left ventricular injection model had been successfully constructed. In vivo imaging at 30 days showed that LUC signals appeared in the legs of the tibia-injected model and the left ventricle-injected model, which indicated that there was a foci of colonization formed in the legs. X-rays also showed bone damage. HE staining and Pan CK immunohistochemical staining confirmed the presence of foci of bone colonization in 100% of the tibial-injected MDA-MB-231 mouse model with a high rate of colonization, whereas only 20% of the left ventricle-injected MDA-MB-231 breast cancer cells mouse model showed foci of bone colonization. Conclusion:The use of in vivo imaging, X-ray and other detection techniques combined with pathological analysis to evaluate the tibial-injected and left ventricle-injected breast cancer cells bone colonization mouse models can improve the accuracy of the result analysis, and can provide experimental and theoretical basis for the study of metastatic mechanism and anti-metastatic treatment of breast cancer.
参考文献/References:
[1] HARBECK N,GNANT M. Breast cancer[J]. Lancet,2017,389(10074): 1134-1150.
[2] GUNDEM G,VAN LOO P,KREMEYER B,et al. The evolutionary history of lethal metastatic prostate cancer[J]. Nature,2015,520(7547): 353-357.
[3] KIM M Y,OSKARSSON T,ACHARYYA S,et al. Tumor self-seeding by circulating cancer cells[J]. Cell,2009,139(7): 1315-1326.
[4] GERSTBERGER S,JIANG Q,GANESH K. Metastasis[J]. Cell,2023,186(8): 1564-1579.
[5] LUO X,LI Y,HUA Z,et al. Exosomes-mediated tumor metastasis through reshaping tumor microenvironment and distant niche[J]. J Control Release,2023,353: 327-336.
[6] FORNETTI J,WELM A L,STEWART S A. Understanding the bone in cancer metastasis[J]. J Bone Miner Res,2018,33(12): 2099-2113.
[7] LIU S J,DANG H X,LIM D A,et al. Long noncoding RNAs in cancer metastasis[J]. Nat Rev Cancer,2021,21(7): 446-460.
[8] HEBERT J D,NEAL J W,WINSLOW M M. Dissecting metastasis using preclinical models and methods[J]. Nat Rev Cancer,2023,23(6): 391-407.
[9] KIM M Y. Breast cancer metastasis[J]. Adv Exp Med Biol,2021, 1187:183-204.
[10] WANG K,CHEN Q,SHAO Y,et al. Anticancer activities of TCM and their active components against tumor metastasis[J]. Biomed Pha-rmacother,2021,133:111044.
[11] MEGINO-LUQUE C,BRAVO-CORDERO J J. Metastasis suppressor genes and their role in the tumor microenvironment[J]. Cancer Me-tastasis Rev,2023,42(4):1147-1154.
[12] HUANG Y,WANG H,YUE X,et al. Bone serves as a transfer station for secondary dissemination of breast cancer[J]. Bone Res,2023,11(1):21.
[13] SADU L,KRISHNAN R H,AKSHAYA R L,et al. Exosomes in bone remodeling and breast cancer bone metastasis[J]. Prog Biophys Mol Biol,2022,175:120-130.
[14] XU Y,ZHANG S,LIAO X,et al. Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling[J]. Mol Cancer,2021,20(1):98.
[15] ZHANG W,XU Z,HAO X,et al. Bone metastasis initiation is coupled with bone remodeling through osteogenic differentiation of NG2+ cells[J]. Cancer Discov,2023,13(2): 474-495.
[16] LI F,LIANG H,YOU H,et al. Targeting HECTD3-IKKα axis inhibits inflammation-related metastasis[J]. Signal Transduct Target Ther,2022,7(1): 264.
[17] TU J,XU H,MA L,et al. Nintedanib enhances the efficacy of PD-L1 blockade by upregulating MHC-Ⅰand PD-L1 expression in tumor cells[J]. Theranostics,2022,12(2): 747-766.
[18] JIANG T Y,SHI YY,CUI X W,et al. PTEN deficiency facilitates exosome secretion and metastasis in cholangiocarcinoma by impairing TFEB-mediated lysosome biogenesis[J]. Gastroenterology,2023, 164(3): 424-438.
[19] BERISH R B,ALI A N,TELMER P G,et al. Translational models of prostate cancer bone metastasis[J]. Nat Rev Urol,2018,15(7): 403-421.
[20] ROBINSON T,ESCARA-WILKE J,DAI J,et al. A CXCR4 inhibitor (balixafortide) enhances docetaxel-mediated antitumor activity in a murine model of prostate cancer bone metastasis[J]. Prostate,2023,83(13): 1247-1254.
[21] ZHANG W,BADO I L,HU J,et al. The bone microenvironment invigorates metastatic seeds for further dissemination[J]. Cell,2021,184(9): 2471-2486.
[22] SHOJI R,TSUCHIE H,NAGASAWA H,et al. Development of new mouse breast cancer model of local bone metastasis and verification using bisphosphonates[J]. In Vivo,2022,36(2): 667-671.
[23] CUI Y Q,GENG Q,YU T,et al. Establishment of a highly meta-static model with a newly isolated lung adenocarcinoma cell line[J]. Int J Oncol,2015,47(3): 927-940.
[24] KUMMER B,L?魻CK S,GURTNER K,et al. Value of functional in-vivo endpoints in preclinical radiation research[J]. Radiother Oncol,2021,158: 155-161.
[25] TAN W C C,NERURKAR S N,CAI H Y,et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy[J]. Cancer Commun (Lond),2020,40(4): 135-153.
[26] SUKSWAI N,KHOURY J D. Immunohistochemistry innovations for diagnosis and tissue-based biomarker detection[J]. Curr Hematol Malig Rep,2019,14(5): 368-375.
[27] BONACHO T,RODRIGUES F,LIBERAL J. Immunohistochemistry for diagnosis and prognosis of breast cancer: a review[J]. Biotech Histochem,2020,95(2): 71-91.
[28] DUAN W R,GARNER D S,WILLIAMS S D,et al. Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts[J]. J Pathol,2003,199(2): 221-228.
相似文献/References:
备注/Memo
- 备注/Memo:
-
基金项目 天津市医学重点学科(专科)建设项目(TJYXZDXK-009A)
作者简介 黄玉凡(1999-),女,硕士在读,研究方向:肿瘤分子生物学;通信作者:李晓青,E-mail:xqli@tmu.edu.cn。
更新日期/Last Update:
2024-05-20