[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] BERDIK C. Unlocking bladder cancer[J]. Nature, 2017, 551(767 9): S34-S35.
[3] CUMBERBATCH MGK, JUBBER I, BLACK P C, et al. Epidemiology of bladder cancer: a systematic review and contemporary update of risk factors in 2018[J]. EurUrol, 2018, 74(6): 784-795.
[4] LENIS A T, LEC P M, CHAMIE K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980.
[5] PATEL V G, OH W K, GALSKY M D. Treatment of muscle-invasive and advanced bladder cancer in 2020[J]. CA Cancer J Clin, 2020, 70(5): 404-423.
[6] WITJES J A, BRUINS H M, CATHOMAS R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104.
[7] CHIARUGI P, GIANNONI E. Anoikis: a necessary death program for anchorage-dependent cells[J]. Biochem Pharmacol, 2008, 76(11): 1352-1364.
[8] FRISCH S M, RUOSLAHTI E. Integrins and anoikis[J]. Curr Opin Cell Biol, 1997, 9(5): 701-706.
[9] PAOLI P, GIANNONI E, CHIARUGI P. Anoikis molecular pathways and its role in cancer progression[J]. Biochim Biophys Acta, 2013, 1833(12): 3481-3498.
[10] ADESHAKIN F O, ADESHAKIN A O, AFOLABI L O, et al. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming[J]. Front Oncol, 2021, 11: 626 577.
[11] HAN H JUN, SUNG J Y, KIM S H, et al. Fibronectin regulates anoikis resistance via cell aggregate formation[J]. Cancer Lett, 2021, 508: 59-72.
[12] REBHAN M, CHALIFA-CASPI V, PRILUSKY J, et al. GeneCa-rds: integrating information about genes, proteins and diseases[J]. Trends Genet, 1997, 13(4): 163.
[13] ROUILLARD A D, GUNDERSEN G W, FERNANDEZ N F, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins[J]. Database, 2016, 2016: baw100.
[14] BROOKS N A, O′DONNELL M A. Combination intravesical therapy[J]. Urol Clin North Am, 2020, 47(1): 83-91.
[15] JIANG D M, GUPTA S, KITCHLU A, et al. Defining cisplatin eligibility in patients with muscle-invasive bladder cancer[J]. Nat Rev Urol, 2021, 18(2): 104-114.
[16] LIU D, QIU X, XIONG X, et al. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics[J]. Clin Transl Oncol, 2020, 22(10): 1687-1697.
[17] PAOLI P, GIANNONI E, CHIARUGI P. Anoikis molecular pathways and its role in cancer progression[J]. Biochim Biophys Acta, 2013, 1833(12): 3481-3498.
[18] SU H, SI X Y, TANG W R, et al. The regulation of anoikis in tumor invasion and metastasis:the regulation of anoikis in tumor invasion and metastasis[J]. Yi Chuan, 2013, 35(1): 10-16.
[19] ANTONI S, FERLAY J, SOERJOMATARAM I, et al. Bladder cancer incidence and mortality: a global overview and recent trends[J]. Eur Urol, 2017, 71(1): 96-108.
[20] WONG K K. DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications[J]. Cell Oncol, 2020, 43(5): 779-792.
[21] LIU H, SONG Y, QIU H, et al. Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis[J]. Cell Death Different, 2020, 27(3): 966-983.
[22] WONG K K. DNMT1: a key drug target in triple-negative breast cancer[J]. Semin Cancer Biol, 2021, 72: 198-213.
[23] 张梦竹,庞战军. F10基因在宫颈癌组织中的表达[J]. 南方医科大学学报,2017,37(6):792-796.
[24] SUN T, ZHONG X, SONG H, et al. Anoikis resistant mediated by FASN promoted growth and metastasis of osteosarcoma[J]. Cell Death Disease, 2019, 10(4): 298.
[25] KIM T W, HONG H K, LEE C, et al. The role of PDGFRA as a therapeutic target in young colorectal cancer patients[J]. J Translat Med, 2021, 19(1): 446.
[26] QI H, FU X, LI Y, et al. SATB1 promotes epithelial-mesenchymal transition and metastasis in prostate cancer[J]. Oncol Lett, 2017, 13(4): 2577-2582.
[27] RAMíREZ-SALAZAR E G, SALINAS-SILVA L C, VáZQUEZ-MANRíQUEZ M E, et al. Analysis of microRNA expression signatures in malignant pleural mesothelioma, pleural inflammation, and atypical mesothelial hyperplasia reveals common predictive tumorigenesis-related targets[J]. Exper Molecul Pathol, 2014, 97(3): 375-385.
[28] LIU Y, ZHU C, TANG L, et al. MYC dysfunction modulates stemness and tumorigenesis in breast cancer[J]. Internat J Biol Sci, 2021, 17(1): 178-187.
[29] MO H, GUAN J, MO L, et al. ATF4 regulated by MYC has an important function in anoikis resistance in human osteosarcoma cells[J]. Mol Med Rep, 2018,17(3):3658-3666.
[30] GAO F, MU X, WU H, et al. Calreticulin(CALR)-induced activa-tion of NF-κB signaling pathway boosts lung cancer cell proliferation[J]. Bioengineered, 2022, 13(3): 6856-6865.
[31] WANG X, WANG Y, YU L, et al. CSPG4 in cancer: multiple roles[J]. Curr Mol Med, 2010, 10(4): 419-429.
[32] XIAO Y, YU D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753.
[33] RUBIO C, MUNERA-MARAVILLA E, LODEWIJK I, et al. Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods?[J]. Clin Transl Oncol, 2019, 21(4): 391-403.
[34] CHEN Z, LIU G, LIU G, et al. Defining muscle-invasive bladder cancer immunotypes by introducing tumor mutation burden, CD8+ T cells, and molecular subtypes[J]. Hereditas, 2021, 158(1): 1.
[35] 李炜,曾静媛,罗波,等. 膀胱癌患者高表达活化的CD4+记忆性T细胞和CD8+T细胞和低表达M0巨噬细胞与临床预后佳有关[J]. 细胞与分子免疫学杂志,2020,36(2):97-103.
[36] 周瑾,陈士岭,邢福祺,等. 葡萄胎发病新基因F10与滋养细胞肿瘤侵袭相关性研究[J]. 南方医科大学学报,2005,25(2):171-173.
[37] 周瑾,梁卫华,李冰,等. 葡萄胎发病新基因F10在不同肿瘤组织的表达[J]. 广东医学,2005,26(5):596-597.
[38] SONG Y L, ZHANG G, PANG Z J, et al. Effects of gene F10 over-expression on the tumorigenicity of A549 cells[J]. Med J Chin People′s Liberation Army, 2012,37: 676-680.
[39] LIU X, TANG H, WANG Z, et al. F10 gene hypomethylation, a putative biomarker for glioma prognosis[J]. J Neurooncol, 2012,107(3):479-485.
[1]陈可新,郝晓东,薄志强,等.≤pT2N0M0膀胱癌根治术后近期复发的影响因素分析[J].天津医科大学学报,2017,23(04):357.
CHEN Ke-xin,HAO Xiao-dong,BO Zhi-qiang,et al.Influencing factors and prognosis of short-term relapse after radical cystectomy of primary bladder cancer(≤pT2N0M0)[J].Journal of Tianjin Medical University,2017,23(01):357.
[2]孟旭英,李珍瑾,郭剑超.组蛋白甲基转移酶EZH2抑制剂联合抗癌药物对膀胱癌细胞功能影响的研究[J].天津医科大学学报,2018,24(01):25.
MENG Xu-ying,LI Zhen-jin,GUO Jian-chao.Effect of histone methyltransferase EZH2 inhibitor combined with anticancer drugs on migration and proliferation of bladder cancer cells[J].Journal of Tianjin Medical University,2018,24(01):25.
[3]刘 莉 康家旗 综 述,刘晓强 审 校.膀胱癌外周血生物标志物研究进展[J].天津医科大学学报,2018,24(06):566.
[4]刘志飞,张志宏,邢力永,等.RRM1 mRNA与吉西他滨药物膀胱灌注治疗膀胱癌疗效的关系[J].天津医科大学学报,2019,25(01):51.
LIU Zhi-fei,ZHANG Zhi-hong,XING Li-yong,et al.The relationship between expression of RRM1 mRNA and efficacy of intravesical of gemcitabine in patients with nonmuscle-insive bladder caner[J].Journal of Tianjin Medical University,2019,25(01):51.
[5]付真睿,盛 飞,张昌文,等.SOX6在膀胱癌发生发展中的作用及相关机制[J].天津医科大学学报,2019,25(04):373.
FU Zhen-rui,SHENG Fei,ZHANG Chang-wen,et al.The characteristics of SOX6 in development of bladder cancer and relevant mechanism[J].Journal of Tianjin Medical University,2019,25(01):373.
[6]王银蕾,杨 瀚,高 杰,等.PITX2启动子甲基化及其与膀胱癌临床病理的关系[J].天津医科大学学报,2020,26(01):39.
WANG Yin-lei,YANG Han,GAO Jie,et al.Methylation of PITX2 promoter and relationship with clinical pathology of bladder cancer[J].Journal of Tianjin Medical University,2020,26(01):39.
[7]王玉杰,沈冲,高深,等.长链非编码RNA-FENDRR在膀胱癌组织中的表达及临床意义[J].天津医科大学学报,2020,26(05):445.
WANG Yu-jie,SHEN Chong,GAO Shen,et al.Expression of long non-coding RNA FENDRR in human bladder cancer tissues and Clinical significance[J].Journal of Tianjin Medical University,2020,26(01):445.
[8]朱建强,郑志文,付青峰,等.人工纳米材料在膀胱癌诊疗中的研究进展[J].天津医科大学学报,2022,28(05):563.
[9]陆益,于佳熙,梁政.氯丙嗪对膀胱癌BT-B细胞迁移功能的影响[J].天津医科大学学报,2022,28(06):621.
LU Yi,YU Jia-xi,LIANG Zheng.The effect of chlorpromazine on the migration of BT-B cellsin bladder cancer[J].Journal of Tianjin Medical University,2022,28(01):621.
[10]孙晓宇 张志宏 张昌文.膀胱癌类器官模型的研究进展[J].天津医科大学学报,2023,29(05):564.