[1] CHEN Y, MIAO Y, LIU K, et al. Evolutionary course of the femoral head osteonecrosis: histopathological-radiologic characteristics and clinical staging systems[J]. J Orthop Translat, 2021, 32:28-40.
[2] 孙伟, 高福强, 李子荣. 股骨头坏死临床药物防治专家共识(2022年)[J]. 中国骨伤, 2023, 36(8):724-730.
[3] LAMB JN, HOLTON C, O′CONNOR P, et al. Avascular necrosis of the hip[J]. BMJ, 2019, 365:12178.
[4] YANG J, WANG S, ZHANG G, et al. Static magnetic field(2-4 T) improves bone microstructure and mechanical properties by coordinating osteoblast/osteoclast differentiation in mice[J]. Bioelectromagnetics, 2021, 42(3):200-211.
[5] ZHANG G, ZHEN C, YANG J, et al. 1-2 T static magnetic field combined with Ferumoxytol prevent unloading-induced bone loss by regulating iron metabolism in osteoclastogenesis[J]. J OrthopTra-nslat, 2022, 38:126-140.
[6] YANG J, ZHOU S, LV H, et al. Static magnetic field of 0.2-0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice[J]. Int J Radiat Biol, 2021, 97(5):746-754.
[7] ZHANG J, MENG X, DING C, et al. Effects of static magnetic fields on bone microstructure and mechanical properties in mice[J]. Electromagn Biol Med, 2018, 37(2):76-83.
[8] LIU D, LI X, LI J, et al. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing[J]. Bone, 2015,81:620-631.
[9] LIU D, ZHANG Y, LI X, et al. IF2α Signaling regulates ischemic osteonecrosis through endoplasmic reticulum stress[J]. Sci Rep, 2017, 7(1):5062.
[10] SUN Y, FANG Y, LI X, et al. A static magnetic field enhances the repair of osteoarthritic cartilage by promoting the migration of stem cells and chondrogenesis[J]. J Orthop Translat, 2023,39:43-54.
[11] MA J, SUN Y, ZHOU H,et al. Animal models of femur head necrosis for tissue engineering and biomaterials research[J]. Tissue Eng Part C Methods, 2022, 28(5):214-227.
[12] KONARSKI W, POBOZY T, ■LIWCZYNSKI A, et al. Avascular necrosis of femoralhead-overview and current state of the art[J]. Int J Environ Res Public Health, 2022, 19(12):7348.
[13] ZHAO D, ZHANG F, WANG B, et al. Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults (2019 version)[J]. J Orthop Translat, 2020, 21:100-110.
[14] WHITMARSD-BROWN M A, CHRIST A B, LIN A J, et al. Modernizing our understanding of total hip arthroplasty in the pediatric and young adult patient: asingle-center experience[J]. J Pediatr Orthop, 2023, 43(4):e290-e298.
[15] XIA Y, SUN J, ZHAO L, et al. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration[J]. Biomaterials, 2018, 183:151-170.
[16] RIBEIRO T P, FLORES M, MADUREIRA S, et al. Magnetic bone tissue engineering: reviewing the effects of magnetic stimulation on bone regeneration and angiogenesis[J]. Pharmaceutics, 2023, 15(4):1045.
[17] CHEN G, ZHUO Y, TAO B,et al. Moderate SMFs attenuate bone loss in mice by promoting directional osteogenic differentiation of BMSCs[J]. Stem Cell Res Ther, 2020, 11(1):487.
[18] CAO H, SHI K, LONG J,et al. PDGF-BB prevents destructive repair and promotes reparative osteogenesis of steroid-associated osteonecrosis of the femoral head in rabbits[J]. Bone, 2023, 167:116645.
[19] CHEN C, YANG S, FENG Y, et al. Impairment of two types of circulating endothelial progenitor cells in patients with glucocorticoid-induced avascular osteonecrosis of the femoral head[J]. Joint Bone Spine, 2013, 80(1):70-76.
[20] ZHANG Y, TIAN K, MA X, et al. Analysis of damage in relation to different classifications of pre-collapse osteonecrosis of the femoral head[J]. J Int Med Res, 2018, 46(2):693-698.
[21] VICAS R M, BODOG F D, FUGARU F O, et al. Histopathological and immunohistochemical aspects of bone tissue in aseptic necrosis of the femoral head[J]. Rom J Morphol Embryol, 2020, 61(4):1249-1258.
[22] LI X, LIU D, LI J, et al. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model[J]. FASEB J, 2019, 33(8):8913-8924.
[23] WANG X, LI X, LI J, et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells[J]. FASEB J, 2021, 35(1):e21150.
[24] ABDURAHMAN A, LI X, LI J, et al. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model[J]. Bone, 2022, 157:116346.
[25] WU D, KANG L, TIAN J, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p[J]. Int J Nanomedicine, 2020, 15:7979-7993.
[26] WU D, CHANG X, TIAN J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis[J]. J Nanobiotechnology, 2021, 19(1):209.