|本期目录/Table of Contents|

[1]杜鑫,刘巧慧,张扬,等.中老年人结构相似网络与脑基因表达的关联研究[J].天津医科大学学报,2023,29(06):599-603.
 DU Xin,LIU Qiao-hui,ZHANG Yang,et al.A study on the correlation between morphometric similarity network and brain gene expression in the middle-aged and elderly people[J].Journal of Tianjin Medical University,2023,29(06):599-603.
点击复制

中老年人结构相似网络与脑基因表达的关联研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年06期
页码:
599-603
栏目:
基础医学
出版日期:
2023-11-20

文章信息/Info

Title:
A study on the correlation between morphometric similarity network and brain gene expression in the middle-aged and elderly people
文章编号:
1006-8147(2023) 06-0599-05
作者:
杜鑫刘巧慧张扬王紫蕊张权
(天津医科大学总医院医学影像科,天津 300052)
Author(s):
DU XinLIU Qiao-huiZHANG YangWANG Zi-ruiZHANG Quan
(Department of Medical Imaging,General Hospital,Tianjin Medical University,Tianjin 300052,China)
关键词:
脑结构磁共振成像结构相似网络基因表达
Keywords:
brain structure magnetic resonance imaging morphometric similarity network gene expression
分类号:
R394
DOI:
-
文献标志码:
A
摘要:
目的:从全基因组脑表达的角度揭示人脑结构相似网络(MSN)的生物学基础。方法:基于194名正常中老年受试者[男88名,女106名,平均年龄(57.56 ± 7.76岁)]的高分辨率三维T1加权成像(3D-T1WI)和弥散张量成像(DTI)数据,提取7个影像学特征指标,包括:皮层表面积、皮层厚度、灰质体积、高斯曲度、平均曲度、各向异性分数和平均扩散系数,构建MSN。同时借助艾伦人脑图谱(allen human brain atlas,AHBA)全基因组脑基因表达数据进行基因表达与MSN的空间关联分析。然后,对与MSN显著相关的基因进行富集分析。结果:所有连接密度阈值下194名受试者的平均MSN图与无阈值的MSN图均存在显著相关性(Pautocorr<0.05)。基因表达-MSN的空间关联分析发现了770个与中老年MSN显著相关的基因(bonferroni,Pautocorr<0.05),这些基因主要富集于突触信号转导和中枢神经系统发育等生物学过程,并且与自闭症、精神分裂症和重度抑郁等神经精神疾病的发生有关。其中,194名受试者的平均MSN与SLC26A4(r=0.619,P=3.311e-17)和SEMA4F(r=0.624,P=1.559e-16)的基因表达量呈正相关,与TRAPPC2B(r=-0.625,P=1.337e-17)和KCNA3(r=-0.617,P=4.349e-17)基因表达量呈负相关。结论:中老年人MSN受突触信号转导和中枢神经系统发育等通路基因的调控,是MSN用于神经精神疾病脑改变研究的生物学基础。
Abstract:
Objective:To investigate the biological basis of human brain morphometric similarity network(MSN) from the perspective of whole genome brain expression. Methods:The MSN of seven features derived from images of high-resolution three-dimensional T1 weighted imaging(3D-T1WI) and diffusion tensor imaging(DTI),including cortical area,cortical thickness,gray matter volume,gaussian curvature,mean curvature,fractional anisotropy and mean diffusivity,acquired from the 194 middle-aged and elderly subjects[88 males and 106 females,average age(57.56±7.76)years] was calculated. Then,spatial association analysis of gene expression with MSN was conducted using the Allen Human Brain Atlas(AHBA) genome-wide brain gene expression data. Finally,enrichment analysis was performed on the gene list associated with MSN. Results:At all connection densities,there was a significant correlation between the mean MSN map of 194 subjects and the MSN map with no thresholding(Pautocorr<0.05). A total of 770 MSN-related genes significantly associated with middle-aged and elderly MSN were found by the spatial association analysis of gene expression MSN(bonferroni,Pautocorr<0.05),which were mainly enriched in biological process of the synaptic signaling and the central nervous system development etc. In additional,these genes were known to be involved in autistic disorder,schizophrenia,major depressive disorder and neurodevelopmental disorders etc. Among them,the mean MSN of 194 subjects was positively correlated with the gene expression of SLC26A4(r=0.619,P=3.311e-17) and SEMA4F(r =0.624,P=1.559e-16),while negatively correlated with the gene expression of TRAPPC2B(r=-0.625,P=1.337e-17) and KCNA3(r=-0.617,P=4.349e-17). Conclusion:MSN in middle-aged and elderly people is regulated by genes in the synaptic signal transduction and central nervous system development pathways,which is the biological basis of MSN used in the study of brain changes in neuropsychiatric diseases.

参考文献/References:

[1] LI J,SEIDLITZ J,SUCKLING J,et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures[J]. Nat Commun,2021,12(1):1647.
[2] FENCHEL D,DIMITROVA R,ROBINSON E C,et al. Neonatal multi-modal cortical profiles predict 18-month developmental outcomes[J]. Dev Cogn Neurosci,2022,54:101103.
[3] SEIDLITZ J,VASA F,SHINN M,et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation[J]. Neuron,2018,97(1):231-247,e237.
[4] WEI Y,SCHOLTENS L H,TURK E,et al. Multiscale examination of cytoarchitectonic similarity and human brain connectivity[J]. Netw Neurosci,2019,3(1):124-137.
[5] SCHAEFER A,KONG R,GORDON E M,et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J]. Cereb Cortex,2018,28(9):3095-3114.
[6] MARKELLO R D,ARNATKEVICIUTE A,POLINE J B,et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox[J]. Elife,2021,10:e72129.
[7] BURT J B,HELMER M,SHINN M,et al. Generative modeling of brain maps with spatial autocorrelation[J]. Neuroimage,2020,220:117038.
[8] ZENG H,SHEN E H,HOHMANN J G,et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures[J]. Cell,2012,149(2):483-496.
[9] HAWRYLYCZ M,MILLER J A,MENON V,et al. Canonical genetic signatures of the adult human brain[J]. Nat Neurosci,2015,18(12):1832-1844.
[10] RENTERIA M E,HANSELL N K,STRIKE L T,et al. Genetic architecture of subcortical brain regions:common and region-specific genetic contributions[J]. Genes Brain Behav,2014,13(8):821-830.
[11] HIBAR D P,STEIN J L,RENTERIA M E,et al. Common genetic variants influence human subcortical brain structures[J]. Nature,2015,520(7546):224-229.
[12] WEN W,THALAMUTHU A,MATHER K A,et al. Distinct genetic influences on cortical and subcortical brain structures[J]. Sci Rep,2016,6:32760.
[13] HIBAR D P,ADAMS HHH,JAHANSHAD N,et al. Novel genetic loci associated with hippocampal volume[J]. Nat Commun,2017,8 :13624.
[14] SATIZABAL C L,ADAMS HHH,HIBAR D P,et al. Genetic architecture of subcortical brain structures in 38,851 individuals[J]. Nat Genet,2019,51(11):1624-1636.
[15] LI J,KELLER S S,SEIDLITZ J,et al. Cortical morphometric vulnerability to generalised epilepsy reflects chromosome-and cell type-specific transcriptomic signatures[J]. Neuropathol Appl Neurobiol,2023,49(1):e12857.
[16] MORGAN S E,SEIDLITZ J,WHITAKER K J,et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes[J]. Proc Natl Acad Sci U S A,2019,116(19) :9604-9609.
[17] XUE K,GUO L,ZHU W,et al. Transcriptional signatures of the cortical morphometric similarity network gradient in first-episode,treatment-naive major depressive disorder[J]. Neuropsychopharmacology,2023,48(3):518-528.
[18] ZHANG Y,MA M,XIE Z,et al. Bridging the gap between morphometric similarity mapping and gene transcription in Alzheimer′s disease[J]. Front Neurosci,2021,15:731292.

相似文献/References:

[1]刘春蕾,张媛媛,李锋坦,等.可逆性后部脑病综合征MRI表现与发病机制的相关性分析[J].天津医科大学学报,2014,20(03):196.
 LIU Chun-lei,ZHANG Yuan-yuan,LI Feng-tan,et al.Correlation between pathogenesis and MRI findings in patients with posterior reversible encephalopathy syndrome[J].Journal of Tianjin Medical University,2014,20(06):196.
[2]李 江,张恩龙,赵 阳,等.前列腺癌靶向磁共振成像和光热治疗的实验研究[J].天津医科大学学报,2017,23(02):93.
 LI Jiang,ZHANG En-long,ZHAO Yang,et al.?Experimental research of targeted magnetic resonance imaging and photo thermal therapy for prostate cancer [J].Journal of Tianjin Medical University,2017,23(06):93.
[3]黄晓莹.MRI与CT在非小细胞肺癌淋巴结转移诊断中的应用价值比较[J].天津医科大学学报,2017,23(06):542.
 HUANG Xiao-ying.Application value of MRI and CT in the diagnosis of lymph node metastasis of non-small cell lung cancer[J].Journal of Tianjin Medical University,2017,23(06):542.
[4]陈思,万鑫,万业达.踝关节外侧副韧带损伤程度与X线应力位下测量数值相关性分析[J].天津医科大学学报,2022,28(02):173.
 CHEN Si,WAN Xin,WAN Ye-da.The relationship between ankle joint lateral ligament damage degree and stress ankle radiographs measurement[J].Journal of Tianjin Medical University,2022,28(06):173.
[5]李亚军,胡伟杰,吴超.MRI上测量子宫径线鉴别子宫浆膜下肌瘤与卵巢肿瘤的价值[J].天津医科大学学报,2023,29(03):322.
 LI Ya-jun,HU Wei-jie,WU Chao.The value of uterine diameters on MRI in differentiating subserous leiomyomas from ovarian tumors[J].Journal of Tianjin Medical University,2023,29(06):322.
[6]孟祥虹,王植,张慧慧,等.基于压缩感知的全脊柱三维MRI对脊柱侧弯的应用初探[J].天津医科大学学报,2024,30(04):366.[doi:10.20135/j.issn.1006-8147.2024.04.0366]
 MENG Xianghong,WANG Zhi,ZHANG Huihui,et al.The application of whole spine three-dimensional MRI based on compressive sensing in scoliosis: a preliminary study[J].Journal of Tianjin Medical University,2024,30(06):366.[doi:10.20135/j.issn.1006-8147.2024.04.0366]

备注/Memo

备注/Memo:
基金项目 天津市自然科学基金多元投入基金项目面上项目(21JCYBJC01280);天津市自然科学基金重点项目(17JCZDJC36300);天津市教委科研计划(2022KJ241);天津市医学重点学科(专科)建设项目(TJYXZDXK-001A)
作者简介 杜鑫(1990-),女,讲师,博士,研究方向:影像遗传学;通信作者:张权,E-mail:quanzhang@tmu.edu.cn。
更新日期/Last Update: 2023-12-01