[1] DEL R R,ANDRADE D C,LUCERO C,et al. Carotid body ablation abrogates hypertension and autonomic alterations induced by inter-mittent hypoxia in rats[J]. Hypertension,2016,68( 2):436-445.
[2] REY S,TARVAINEN M P,KARJALAINEN P A,et al. Dynamic time-varying analysis of heart rate and blood pressure variability in cats exposed to short-term chronic intermittent hypoxia [J]. Am J Physiol Regul Integr Comp Physiol,2008,295( 1):R28-R37.
[3] SANCHEZ-DE-LA-TORRE M,SANCHEZ-DE-LA-TORRE A, BERTRAN S,et al. Effect of obstructive sleep apnoea and its treat-ment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome ( ISAACC study):a randomised controlled trial[J].LancetRespirMed, 2020,8( 4):359-367.
[4] PRABHAKAR N R,PENG Y J,NANDURI J. Hypoxia-inducible factors and obstructive sleep apnea[J]. J Clin Invest,2020,130(10):5042-5051.
[5] PENG Y J,NANDURI J,RAGHURAMAN G,et al. Role of oxidative stress-induced endothelin-converting enzyme activity in the alter-ation of carotid body function by chronic intermittent hypoxia[J]. Exp Physiol,2013,98( 11):1620-1630.
[6] LI J,YANG S,YU F,et al. Endothelin-1 enhanced carotid body chemosensory activity in chronic intermittent hypoxia through PLC, PKC and p38MAPK signaling pathways[J]. Neuropeptides,2019, 74:44-51.
[7] SHELL B,FARMER G E,NEDUNGADI T P,et al. Angiotensin type 1a receptors in the median preoptic nucleus support intermittent hy-poxia-induced hypertension [J]. Am J Physiol Regul Integr Comp Physiol,2019,316( 5):R651-R665.
[8] DEL R R,MOYA E A,ITURRIAGA R. Differential expression of pro-inflammatory cytokines,endothelin-1 and nitric oxide synthas-es in the rat carotid body exposed to intermittent hypoxia[J]. Brain Res,2011,1395:74-85.
[9] YUAN G,PENG Y J,KHAN S A,et al. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea[J]. Sci Signal,2016,9( 441):a80.
[10] DEL R R,MOYA E A,PARGA M J,et al. Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia [J]. Eur Respir J,2012,39( 6):1492-1500.
[11] DESPAS F,LAMBERT E,VACCARO A,et al. Peripheral chemore-flex activation contributes to sympathetic baroreflex impairment in chronic heart failure[J]. J Hypertens,2012,30( 4):753-760.
[12] DEL R R,MARCUS N J,SCHULTZ H D. Carotid chemoreceptor ab-lation improves survival in heart failure:rescuing autonomic control of cardiorespiratory function [J]. J Am Coll Cardiol,2013,62( 25):2422-2430.
[13] NIEWINSKI P,JANCZAK D,RUCINSKI A,et al. Carotid body re-moval for treatment of chronic systolic heart failure[J]. Int J Cardiol, 2013,168( 3):2506-2509.
[14] MARCUS N J,DEL R R,DING Y,et al. KLF2 mediates enhanced chemoreflex sensitivity,disordered breathing and autonomic dysreg-ulation in heart failure[J]. J Physiol,2018,596( 15):3171-3185.
[15] SINSKI M,LEWANDOWSKI J,PRZYBYLSKI J,et al. Deactivation of carotid body chemoreceptors by hyperoxia decreases blood pressure in hypertensive patients[J]. Hypertens Res,2014,37( 9):858-862.
[16] ABDALA A P,MCBRYDE F D,MARINA N,et al. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat[J]. J Physiol,2012,590( 17):4269-4277.
[17] PIJACKA W,MCBRYDE F D,MARVAR P J,et al. Carotid sinus denervation ameliorates renovascular hypertension in adult Wistar rats[J]. J Physiol,2016,594( 21):6255-6266.
[18] PIJACKA W,MORAES D J,RATCLIFFE L E,et al. Purinergic re-ceptors in the carotid body as a new drug target for controlling hy-pertension[J]. Nat Med,2016,22( 10):1151-1159.
[19] XUE Q,WANG R,WANG L,et al. Downregulating the P2X3 recep-tor in the carotid body to reduce blood pressure via acoustic gene delivery in canines[J]. Transl Res,2021,227:30-41.
[20] ZHENG F,MU S,RUSCH N J. Leptin activates trpm7 channels in the carotid body as a mechanism of obesity-related hypertension[J]. Circ Res,2019,125( 11):1003-1005.
[21]眭清永,王新文,杨旸曈,等.颈部CTA标准方案改进联合靶扫
[22] ITURRIAGA R. Translating carotid body function into clinical medicine[J]. J Physiol,2018,596( 15):3067-3077.
[23] ITURRIAGA R. Carotid body ablation:a new target to address cen-tral autonomic dysfunction[J]. Curr Hypertens Rep,2018,20(6):53.
[24] NARKIEWICZ K,RATCLIFFE L E,HART E C,et al. Unilateral carotid body resection in resistant hypertension:a safety and feasi-bility trial[J]. JACC Basic Transl Sci,2016,1( 5):313-324.
[25] SCHLAICH M,SCHULTZ C,HERING D,et al. First in-human e-valuation of a transvenous carotid body ablation device to treat pa-tients with resistant hypertension[J]. Heart Lung Circ,2017,26:S57.
[26] SCHLAICH M,SCHULTZ C,SHETTY S,et al. 1416 Transvenous carotid body ablation for resistant hypertension:main results of a multicentre safety and proof-of-principle cohort study[J]. Eur Heart J,2018,39( Suppl_1):267.
[27] NIEWINSKI P,JANCZAK D,RUCINSKI A,et al. Dissociation be-tween blood pressure and heart rate response to hypoxia after bilat-eral carotid body removal in men with systolic heart failure[J]. Exp Physiol,2014,99( 3):552-561.
[28] NIEWINSKI P,JANCZAK D,RUCINSKI A,et al. Carotid body re-section for sympathetic modulation in systolic heart failure:results from first-in-man study[J]. Eur J Heart Fail,2017,19( 3):391-400.
[29] NIEWINSKI P,TUBEK S,PATON J,et al. Oxygenation pattern and compensatory responses to hypoxia and hypercapnia following bilat-eral carotid body resection in humans[J]. J Physiol,2021,599( 8):2323-2340.
[1]徐北政,赵晓赟,杨洋,等.颈动脉体损伤对COPD大鼠模型呼吸调控功能的影响[J].天津医科大学学报,2021,27(04):349.
XU Bei-zheng,ZHAO Xiao-yun,YANG Yang,et al.Effects of carotid body injury on respiratory regulation in COPD rat model[J].Journal of Tianjin Medical University,2021,27(04):349.