|本期目录/Table of Contents|

[1]左旭,李津.基于生物信息学方法筛选系统性红斑狼疮疾病进展中与先天免疫细胞相关的关键基因[J].天津医科大学学报,2023,29(03):243-251.
 ZUO Xu,LI Jin.Bioinformatics-based approach to screen key genes associated with innate immune cells in the development of systemic lupus erythematosus[J].Journal of Tianjin Medical University,2023,29(03):243-251.
点击复制

基于生物信息学方法筛选系统性红斑狼疮疾病进展中与先天免疫细胞相关的关键基因(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年03期
页码:
243-251
栏目:
生物信息学专题
出版日期:
2023-05-20

文章信息/Info

Title:
Bioinformatics-based approach to screen key genes associated with innate immune cells in the development of systemic lupus erythematosus
文章编号:
1006-8147(2023)03-0243-09
作者:
左旭李津
(天津医科大学基础医学院生物信息学系,天津300070)
Author(s):
ZUO XuLI Jin
(Department of Cell Biology,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China)
关键词:
系统性红斑狼疮加权基因共表达网络分析先天免疫细胞枢纽基因
Keywords:
systemic lupus erythematosusweighted correlation network analysisinnate immune cellskey genes
分类号:
R593.24
DOI:
-
文献标志码:
A
摘要:
目的:通过生物信息学方法识别系统性红斑狼疮(SLE)疾病进展中与先天免疫细胞相关的的关键基因。方法:在GEO数据库中下载了GSE50772、GSE81622、GSE99967数据集的表达谱,并对其进行整合。应用CIBERSORT工具对疾病进行免疫细胞组成和丰度的分析,利用加权基因共表达网络分析(WGCNA)来构建基因共表达网络,对关键模块进行基因本体论(GO)和京都基因和基因组百科全书(KEGG)富集分析,并与差异表达基因相结合,识别先天免疫反应相关的关键基因。结果:通过加权共表达网络分析(WGCNA),确定了与SLE相关的13个模块。其中绿色模块与中性粒细胞显著相关,棕褐色模块与NK细胞显著相关。在绿色模块中筛选出15个枢纽基因,棕褐色模块中筛选出8个枢纽基因。结合差异表达基因进一步筛选出2个hub基因,分别为CXCL1和MME。使用GSE122459数据集对其进行验证,在SLE患者中,CXCL1与MME基因的表达升高,AUC值分别为0.86和0.81,且其表达均与中性粒细胞的比例显著相关。结论:CXCL1和MME基因可能在SLE发展过程中在先天免疫细胞中发挥重要作用。
Abstract:
Objective: To identify key genes associated with innate immune cells in the development of systemic lupus erythematosus (SLE) by bioinformatics approaches. Methods:The expression profiles of three datasets,GSE50772,GSE81622,and GSE99967,were downloaded from the GEO database and integrated. The CIBERSORT was applied to analyze immune cell composition and abundance for disease,and weighted gene co-expression network analysis(WGCNA)was used to construct gene co-expression networks,and key modules were analyzed for gene ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment,and combined with differentially expressed genes to identify key genes associated with the innate immune response. Results:By WGCNA analysis,13 modules associated with SLE were identified. Among them,the green module was significantly associated with neutrophils and the tan module was significantly associated with NK cells. Fifteen hub genes were screened in the green module,and 8 hub genes were screened in the tan module. Two hub genes,CXCL1 and MME,were further screened in combination with differentially expressed genes. They were validated using the GSE122459 dataset,and the expression of CXCL1 and MME genes were elevated in SLE patients with AUC values of 0.86 and 0.81,respectively,and their expressions were both significantly correlated with the proportion of neutrophils. Conclusion:CXCL1 and MME genes may play important roles in innate immune cells during the development of SLE.

参考文献/References:

[1] D?魻RNER T,FURIE R. Novel paradigms in systemic lupus erythematosus[J]. Lancet,2019,393(10188):2344-2358.
[2] NIEWOLD T B,HUA J,LEHMAN T J,et al. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus[J].Genes Immun,2007,8(6):492-502.
[3] CASCIOLA-ROSEN L A,ANHALT G,ROSEN A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes[J]. J Exp Med,1994,179(4):1317-1330.
[4] TSOKOS G C,LO M S,COSTA REIS P,et al. New insights into the immunopathogenesis of systemic lupus erythematosus[J]. Nat Rev Rheumatol,2016,12(12):716-730.
[5] TENBROCK K,RAUEN T. T cell dysregulation in SLE[J]. Clin Immunol,2022,239:109031.
[6] GIANCHECCHI E,DELFINO D V,FIERABRACCI A. Natural killer cells:potential biomarkers and therapeutic target in autoimmune diseases?[J]. Front Immunol,2021,12:616853.
[7] HERRADA A A,ESCOBEDO N,IRURETAGOYENA M,et al. Innate Immune cells′ contribution to systemic lupus erythematosus[J].Front Immunol,2019,10:772.
[8] GUPTA S,KAPLAN M J. Bite of the wolf:innate immune responses propagate autoimmunity in lupus[J]. J Clin Invest,2021,131(3):e144918.
[9] KUKSIN M,MOREL D,AGLAVE M,et al. Applications of single-cell and bulk RNA sequencing in onco-immunology[J]. Eur J Cancer,2021,149:193-210.
[10] MATTA B,BARNES B J. Coordination between innate immune cells,type I IFNs and IRF5 drives SLE pathogenesis[J]. Cytokine,2020,132:154731.
[11] OLSSON L M,JOHANSSON A C,GULLSTRAND B,et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus [J]. Ann Rheum Dis,2017,76(9):1607-1613.
[12] LI Y,LEE P Y,SOBEL E S,et al. Increased expression of FcgammaRI/CD64 on circulating monocytes parallels ongoing inflammation and nephritis in lupus[J]. Arthritis Res Ther,2009,11(1):R6.
[13] ARAN D,HU Z,BUTTE A J. xCell:digitally portraying the tissue cellular heterogeneity landscape[J].Genome Biol,2017,18(1):220.
[14] LANGFELDER P,HORVATH S. WGCNA:an R package for weighted correlation network analysis[J]. BMC Bioinformatics,2008,9:559.
[15] LI P,JIANG M,LI K,et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol,2021,22(9):1107-1117.
[16] HUMBEL M,BELLANGER F,FLUDER N,et al. Restoration of NK cell cytotoxic function with elotuzumab and daratumumab promotes elimination of circulating plasma cells in patients with SLE[J]. Front Immunol,2021,12:645478.
[17] CARAFFA A,GALLENGA C E,KRITAS S K,et al. Impact of mast cells in systemic lupus erythematosus:can inflammation be inhibited?[J]. J Biol Regul Homeost Agents,2019,33(3):669-673.
[18] MISTRY P,NAKABO S,O′NEIL L,et al. Transcriptomic,epigenetic,and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus[J]. Proc Natl Acad Sci U S A,2019,116(50):25222-25228.
[19] RUCHAKORN N,NGAMJANYAPORN P,SUANGTAMAI T,et al. Performance of cytokine models in predicting SLE activity[J]. Arthritis Res Ther,2019,21(1):287.
[20] BONEGIO R G,LIN J D,BEAUDETTE-ZLATANOVA B,et al. Lupus-associated immune complexes activate human neutrophils in an fcgammaRIIA-dependent but TLR-independent response[J]. J Immunol,2019,202(3):675-683.
[21] WANG H,LI T,CHEN S,et al. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin[J]. Arthritis Rheumatol,2015,67(12):3190-3200.
[22] TAN W,GU Z,LENG J,et al. Let-7f-5p ameliorates inflammation by targeting NLRP3 in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus[J]. Biomed Pharmacother,2019,118:109313.
[23] SAKKAS L I,BOULBOU M,KYRIAKOU D,et al. Immunological features of visceral leishmaniasis may mimic systemic lupus erythematosus[J]. Clin Biochem,2008,41(1/2):65-68.
[24] FAIRWEATHER-TAIT S J,BAO Y,BROADLEY M R,et al. Selenium in human health and disease[J]. Antioxid Redox Signal,2011, 14(7):1337-1383.
[25] GIANNELOU M,NEZOS A,FRAGKIOUDAKI S,et al. Contribution of MTHFR gene variants in lupus related subclinical atherosclerosis[J]. Clin Immunol,2018,193:110-117.
[26] REFAI T M,AL-SALEM I H,NKANSA-DWAMENA D,et al. Hyperhomocysteinaemia and risk of thrombosis in systemic lupus erythematosus patients[J]. Clin Rheumatol,2002,21(6):457-461.
[27] LECH M,ANDERS H J. The pathogenesis of lupus nephritis[J]. J Am Soc Nephrol,2013,24(9):1357-1366.
[28] RAJARATHNAM K,SCHNOOR M,RICHARDSON R M,et al. How do chemokines navigate neutrophils to the target site:dissecting the structural mechanisms and signaling pathways[J]. Cell Signal,2019,54:69-80.
[29] ZENG Y,LIN Q,YU L,et al. Chemokine CXCL1 as a potential marker of disease activity in systemic lupus erythematosus[J]. BMC Immunol,2021,22(1):82.
[30] LIU W,HUANG G,RUI H,et al. Course monitoring of membranous nephropathy:both autoantibodies and podocytes require multidimensional attention[J]. Autoimmun Rev,2022,21(2):102976.
[31] TORO-DOMINGUEZ D,CARMONA-SAEZ P,ALARCON-RIQUELME M E. Shared signatures between rheumatoid arthritis,systemic lupus erythematosus and Sjogren′s syndrome uncovered through gene expression meta-analysis[J]. Arthritis Res Ther,2014, 16(6):489.

相似文献/References:

[1]孟繁杰 综述,王广舜 审校.胸腺瘤与自身免疫性疾病的研究进展[J].天津医科大学学报,2021,27(02):195.
[2]李赫,胡坚,刘力.儿童系统性红斑狼疮伴Jaccoud关节病1例并文献复习[J].天津医科大学学报,2022,28(06):672.
[3]文照禾 综述,刘力 审校.血液代谢组学在系统性红斑狼疮中的应用进展[J].天津医科大学学报,2023,29(06):677.
[4]崔晓慧,曹源,孟晓楠,等.系统性红斑狼疮合并感染的临床分析[J].天津医科大学学报,2024,30(03):260.[doi:10.20135/j.issn.1006-8147.2024.03.0260]
 CUI Xiaohui,CAO Yuan,MENG Xiaonan,et al.Clinical analysis of systemic lupus erythematosus complicated with infection[J].Journal of Tianjin Medical University,2024,30(03):260.[doi:10.20135/j.issn.1006-8147.2024.03.0260]
[5]申杨,段子博,谭展望,等.外阴鳞状细胞癌关键基因的筛选及免疫浸润分析[J].天津医科大学学报,2024,30(05):391.[doi:10.20135/j.issn.1006-8147.2024.05.0391]
 SHEN Yang,DUAN Zibo,TAN Zhanwang,et al.Screening and immunoinfiltration analysis of key genes in vulvar squamous cell carcinoma[J].Journal of Tianjin Medical University,2024,30(03):391.[doi:10.20135/j.issn.1006-8147.2024.05.0391]
[6]修占杰,刘佳玙,王誉童,等.基于生信分析对强直性脊柱炎关键基因及药物靶点的 预测[J].天津医科大学学报,2024,30(06):535.[doi:10.20135/j.issn.1006-8147.2024.06.0535]
 XIU Zhanjie,LIU Jiayu,WANG Yutong,et al.Key genes and drug targets prediction of ankylosing spondylitis based on bioinformatics analysis[J].Journal of Tianjin Medical University,2024,30(03):535.[doi:10.20135/j.issn.1006-8147.2024.06.0535]

备注/Memo

备注/Memo:
作者简介 左旭(1996-),女,硕士在读,研究方向:自身免疫病的转录组学;通信作者:李津,E-mail:jli01@tmu.edu.cn。
更新日期/Last Update: 1900-01-01