|本期目录/Table of Contents|

[1]孔一晗,董亚,常柏.基于网络药理学及分子对接探究银杏叶干预糖尿病心肌病的作用机制[J].天津医科大学学报,2023,29(03):227-234.
 KONG Yi-han,DONG Ya,CHANG Bai.The mechanism of gingko leaf intervention in diabetic cardiomyopathy based on network pharmacology and molecular docking[J].Journal of Tianjin Medical University,2023,29(03):227-234.
点击复制

基于网络药理学及分子对接探究银杏叶干预糖尿病心肌病的作用机制(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
29卷
期数:
2023年03期
页码:
227-234
栏目:
生物信息学专题
出版日期:
2023-05-20

文章信息/Info

Title:
The mechanism of gingko leaf intervention in diabetic cardiomyopathy based on network pharmacology and molecular docking
文章编号:
1006-8147(2023)03-0227-08
作者:
孔一晗1董亚1常柏2
(1.天津医科大学研究生院,天津 300070;2.天津医科大学朱宪彝纪念医院,天津市内分泌研究所国家卫健委激素与发育重点实验室,天津市代谢性疾病重点实验室,天津 300134)
Author(s):
KONG Yi-han1DONG Ya1CHANG Bai2
(1.Graduate School,Tianjin Medical University,Tianjin 300070,China;2. Key Laboratory of Hormones and Development,Tianjin Key Laboratory of Metabolic Diseases,National Health Commission,Tianjin Institute of Endocrinology,Chu Hsien-I Memorial Hospital,Tianjin Medical University,Tianjin 300134,China)
关键词:
银杏叶糖尿病心肌病网络药理学
Keywords:
ginkgo leafdiabetic cardiomyopathynetwork pharmacology
分类号:
R541
DOI:
-
文献标志码:
A
摘要:
目的:使用网络药理学的方法研究银杏叶治疗糖尿病心肌病的机制。方法:在中药系统药理学数据库与分析平台(TCMSP)检索银杏叶的主要成分,通过GeneCard、OMIM、Disgenet数据库筛选糖尿病心肌病的潜在靶点,利用韦恩图获取银杏叶与糖尿病心肌病的共同靶点,导入STRING蛋白互作平台建构PPI互作网络图,用Cytoscape软件将互作图进行拓扑学分析,并筛选出核心交集靶点。使用DAVID在线数据库对交集靶点进行GO与KEGG富集分析。最后对筛选得到的部分关键靶点及其对应化合物进行分子对接,进一步验证银杏叶干预糖尿病心肌病的核心作用靶点。结果:银杏叶与糖尿病心肌病共有91个交集靶点,通过拓扑学分析发现蛋白激酶B1(Akt1)、肿瘤坏死因子(TNF)、白细胞介素-6(IL-6)、血管内皮生长因子A(VEGFA)、白细胞介素-1β(IL-1β)是银杏叶治疗糖尿病心肌病的核心靶点。KEGG通路富集分析结果显示,银杏叶作用于糖尿病心肌病的通路涉及糖尿病并发症中AGEs-RAGE信号通路、脂质与动脉粥样硬化、IL-17信号通路、TNF信号通路、HIF-1信号通路等。结论:银杏叶可能通过作用于Akt1、TNF、IL-6、VEGFA、IL-1β等靶点减轻炎症和氧化应激水平,抑制心肌细胞凋亡。
Abstract:
Objective: To study the mechanism of ginkgo leaf in the treatment of diabetic cardiomyopathy by network pharmacology. Methods:The main components of ginkgo leaf were searched in the Traditional Chinese Medicine Pharmacology Database and Analysis Platform(TCMSP),and the potential targets of diabetic cardiomyopathy were screened by GeneCard,OMIM and Disgenet databases. The common targets of ginkgo leaf and diabetic cardiomyopathy were obtained by Venn diagram. The STRING protein interaction platform was imported to construct the PPI interaction network diagram. Topological analysis was carried out on the interaction diagram using Cytoscape software,and core intersection targets were screened. GO and KEGG enrichment analysis of intersection targets was performed using DAVID online database. Finally,molecular docking of some key targets and their corresponding compounds was performed to further verify the core target of ginkgo leaf in the intervention of diabetic cardiomyopathy. Results:There were 91 intersection targets between ginkgo leaf and diabetic cardiomyopathy. Topological analysis showed that protein kinase B1(Akt1),tumor necrosis factor(TNF),interleukin-6(IL-6),vascular endothelial growth factor A(VEGFA) and interleukin-1beta(IL-1β) were the core targets of ginkgo leaf in the treatment of diabetic cardiomyopathy. KEGG pathway enrichment analysis showed that the pathway of ginkgo leaf on diabetic cardiomyopathy involved AGEs-RAGE signaling pathway,lipid and atherosclerosis,IL-17 signaling pathway,TNF signaling pathway,HIF-1 signaling pathway and so on in diabetes complications. Conclusion:Ginkgo leaf may reduce inflammation and oxidative stress levels by acting on Akt1,TNF,IL-6,VEGFA,IL-1β and other targets,and inhibit myocardial apoptosis.

参考文献/References:

[1] 冯新星,陈燕燕. 糖尿病心肌病的研究进展[J]. 中国循环杂志,2015,30(1):87-89.
[2] DEI CAS A,FONAROW G C,GHEORGHIADE M,et al. Concomitant diabetes mellitus and heart failure[J]. Curr Probl Cardiol,2015, 40(1):7-43.
[3] 裴志勇,赵玉生,李佳月,等. 慢性心力衰竭住院患者病因学及近期预后的15年变迁[J]. 中华心血管病杂志,2011,39(5):434-439.
[4] 国家中医药管理局《中华本草》编委会.中华本草[M]. 第4册.上海:上海科学技术出版社,1999:280-284.
[5] 王晓梅,金涛,王霞,等. 银杏叶提取物对糖尿病心肌病患者血清粘附分子的影响[J]. 山东第一医科大学(山东省医学科学院)学报,2022,43(2):96-99.
[6] 曹鹏飞,孙荣江,马晓燕,等. 银杏叶提取物抑制Bcl-2表达后对糖尿病心肌病的影响[J]. 中国实验诊断学,2018,22(9):1618-1621.
[7] 薛建军,范强,杨丽霞,等. 糖尿病心肌病发病机制及中医药治疗概述[J]. 中国实验方剂学杂志,2017,23(22):211-217.
[8] 郑磊,迟婷婷,王圣凯,等. 银杏叶提取物对1型糖尿病大鼠左心室收缩功能的影响[J]. 浙江医学,2019,41(1):10-13.
[9] PAN J H. New paradigm for drug discovery based on network pharmacology[J]. Chin J New Drugs Clin Rem,2009,28(10):721-726
[10] 刘志华,孙晓波. 网络药理学:中医药现代化的新机遇[J]. 药学学报,2012,47(6):696-703.
[11] RU J,LI P,WANG J,et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform,2014,6:13-18.
[12] UNIPROT CONSORTIUM. UniProt:the universal protein knowledgebase in 2021[J]. Nucleic Acids Res,2021,49(D1):D480-D489.
[13] SAFRAN M,DALAH I,ALEXANDER J,et al. GeneCards Version 3:the human gene integrator[J]. Database(Oxford),2010,2010:baq020-baq035.
[14] HAMOSH A,SCOTT A F,AMBERGER J S,et al. Online Mendelian Inheritance in Man(OMIM),a knowledgebase of human genes and genetic disorders[J]. Nucleic Acids Res,2005,33(Database issue):D514-D517.
[15] SZKLARCZYK D,GABLE AL,LYON D,et al. STRING v11:protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res,2019,47(D1):D607-D613.
[16] 戚明珠,张铌雪,苏晓慧,等. 黄芪甲苷治疗缺血性脑卒中的网络药理学[J]. 中国实验方剂学杂志,2021,27(3):163-170.
[17] SHANNON P,MARKIEL A,OZIER O,et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res,2003,13(11):2498-2504.
[18] LE D H,PHAM V H. HGPEC:a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network[J]. BMC Syst Biol,2017,11(1):61-70.
[19] DENNIS GJR,SHERMAN B T,HOSACK D A,et al. DAVID:database for annotation,visualization,and integrated discovery[J]. Genome Biol,2003,4(5):P3.
[20] TROTT O,OLSON A J. AutoDock Vina:improving the speed and accuracy of docking with a new scoring function,efficient optimization,and multithreading[J]. J Comput Chem,2010,31(2):455-461.
[21] ZHANG Y,WAN Y,CHEN Y,et al. Ultrasound-enhanced chemo-photodynamic combination therapy by using albumin "Nanoglue"-based nanotheranostics[J]. ACS Nano,2020,14(5):5560-5569.
[22] MORRIS G M,HUEY R,OLSON A J. Using autodock for ligand-receptor docking[J]. Curr Protoc Bioinformatics,2008,Chapter 8:Unit 8.14.
[23] 李艳,李子雯,李利民,等. 基于网络药理学的桑白皮治疗2型糖尿病的作用机制[J]. 山东科学,2023,36(1):41-50.
[24] 刘虹汝,李家桂,袁靓,等. 基于网络药理学和实验验证探究补阳还五汤治疗糖尿病的分子机制[J/OL]. 中国医院药学杂志,https://kns.cnki.net/kcms/detail//42.1204.r.20230130.1651.010.html.
[25] 汪四海.丹蛭降糖胶囊通过调控PI3K/AKT/GSK-3β通路抑制DCM心肌细胞凋亡的机制研究[D]. 安徽中医药大学,2022.
[26] 彭泽,赵大鹏,刘力嘉,等. 基于网络药理学和分子对接技术探析洋参御唐方治疗糖尿病肾脏病的作用机制[J]. 现代中西医结合杂志,2022,31(22):3165-3174.
[27] 郝秀华,张莉,赵丽颖,等. 基于网络药理学和分子对接技术探讨生脉散治疗糖尿病的作用机制[J/OL]. 特产研究:1-10[2023-02-25].
[28] AVAGIMYAN A,POPOV S,SHALNOVA S. The pathophysiological basis of diabetic cardiomyopathy development[J]. Curr Probl Cardiol,2022,47(9):101156-101167.
[29] RITCHIE R H,ABEL E D. Basic mechanisms of diabetic heart disease[J].Circ Res,2020,126(11):1501-1525.
[30] 佟红娜,张晨阳,韩美欣,等. 糖尿病心肌病的发病机制及药物干预研究进展[J]. 中国实验方剂学杂志,2022,28(2):257-265.
[31] 张羽飞,孟娜娜,李厚忠,等. 柚皮苷对糖尿病大鼠心肌病氧化应激及内质网应激的影响[J]. 中国中药杂志,2018,43(3):596-602.
[32] 赵云峰,刘琨,李公豪,等. 银杏叶软胶囊对冠心病伴代谢综合征患者外周血Apelin、ADMA、APN、visfatin的影响[J]. 中药材,2019,42(7):1674-1678.
[33] HERS I,VINCENT E E,TAVAR?魪 J M. Akt signalling in health and disease[J]. Cell Signal,2011,23(10):1515-1527.
[34] KAJNO E,MCGRAW T E,GONZALEZ E. Development of a new model system to dissect isoform specific Akt signalling in adipocytes[J]. Biochem J,2015,468(3):425-434.
[35] 白羽,王燕,张心雨,等. 马齿苋多糖对糖尿病心肌病大鼠的影响[J].中成药,2021,43(10):2858-2862.
[36]LUO Y,SHANG P,LI D. Luteolin:a flavonoid that has multiple cardio-protective effects and its molecular mechanisms[J]. Front Pharmacol,2017,8:692-701.
[37] 林博,韩冉,寿好长,等. 尿IL-6与血IL-6、SOD、C1q联合检测在2型糖尿病肾病诊断中的应用价值[J]. 标记免疫分析与临床,2021,28(8):1261-1265,1304.
[38] ELER S J,MORLAND C. The janus face of VEGF in stroke[J]. Int J Mol Sci,2018,19(5):1362-1381.
[39] ZHAO M X,ZHOU B,LING L,et al. Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy[J]. Cell Death Dis,2017,8(3):e2690-e2699.
[40] RAJESH M,BATKAI S,KECHRID M,et al. Cannabinoid 1 receptor promotes cardiac dysfunction,oxidative stress,inflammation,and fibrosis in diabetic cardiomyopathy[J]. Diabetes ,2012,61(3):716-727.
[41] SAINI A S,TALIYAN R,SHARMA P L. Protective effect and mechanism of Ginkgo biloba extract-EGb 761 on STZ-induced diabetic cardiomyopathy in rats[J]. Pharmacogn Mag,2014,10(38):172-178.
[42] YANG X,ZHAO X,LIU Y,et al. Ginkgo biloba extract protects against diabetic cardiomyopathy by restoring autophagy via adenosine monophosphate-activated protein kinase/mammalian target of the rapamycin pathway modulation[J]. Phytother Res,2023,37(4):1377-1390.

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家自然科学基金面上项目(81973614)
作者简介 孔一晗(1998-),男,硕士在读,研究方向:中西医结合防治糖尿病及其并发症,通信作者:常柏,E-mail:changbai1972@126.com。
更新日期/Last Update: 1900-01-01