[1] CARON M M J,JANSSEN M P F,PEETERS L,et al. Aggrecan and COMP improve periosteal chondrogenesis by delaying chondrocyte hypertrophic maturation[J]. Front Bioeng Biotechnol,2020,8:1036.
[2] BURGER A,ROOSENBOOM J,HOSSAIN M,et al.Mutant COMP shapes growth and development of skull and facial structures in mice and humans[J]. Mol Genet Genomic Med,2020,8(7):e1251.
[3] WEINER D S,GUIRGUIS J,MAKOWSKI M,et al.Orthopaedic manifestations of pseudoachondroplasia[J].J Child Orthop,2019,13(4):409-416.
[4] POSEY K L,ALCORN J L,HECHT J T. Pseudoachondroplasia/COMP-translating from the bench to the bedside[J]. Matrix Biol,2014,37:167-173.
[5] HECHT J T,HAYES E,HAYNES R,et al. COMP mutations,chondrocyte function and cartilage matrix[J]. Matrix Biol,2005,23(8):525-533.
[6] BRIGGS M D,CHAPMAN K L. Pseudoachondroplasia and multiple epiphyseal dysplasia:mutation review,molecular interactions,and genotype to phenotype correlations[J]. Hum Mutat,2002,19(5):465-478.
[7] WANG C H,LIN W D,TSAI A,et al. Novel human pathological mutations.Gene symbol:COMP.Disease:pseudoachondroplasia[J]. Hum Genet,2009,125(3):350.
[8] DINSER R,ZAUCKE F,KREPPEL F,et al. Pseudoachondroplasia is caused through both intra-and extracellular pathogenic pathways[J]. J Clin Invest,2002,110(4):505-513.
[9] NEWTON G,WEREMOWICZ S,MORTON C C,et al. Characterization of human and mouse cartilage oligomeric matrix protein[J]. Genomics,1994 ,24(3):435-439.
[10] POSEY K L,HECHT J T. Novel therapeutic interventions for pseudoachondroplasia[J]. Bone,2017,102:60-68.
[11] POSEY K L,COUSTRY F,VEERISETTY A C,et al . Antioxidant and anti-inflammatory agents mitigate pathology in a mouse model of pseudoachondroplasia[J]. Hum Mol Genet,2015,24(14):3918-3928.
[12] PIR?譫G K A,JAKA O,KATAKURA Y,et al . A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia[J]. Hum Mol Genet,2010,19(1):52-64.
[13] POSEY K L,COUSTRY F,VEERISETTY A C,et al. Chop (Ddit3) is essential for D469del-COMP retention and cell death in chondrocytes in an inducible transgenic mouse model of pseudoachondroplasia[J]. Am J Pathol ,2012 ,180(2):727-737.
[14] MERRITT T M,BICK R,POINDEXTER B J,et al. Unique matrix structure in the rough endoplasmic reticulum cisternae of pseudoachondroplasia chondrocytes[J]. Am J Pathol,2007,170(1):293-300.
[15] HECHT J T,MAKITIE O,HAYES E,et al. Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate[J]. J Orthop Res,2004,22(4):759-767.
[16] SCHMITZ M,BECKER A,SCHMITZ A,et al. Disruption of extracellular matrix structure may cause pseudoachondroplasia phenotypes in the absence of impaired cartilage oligomeric matrix protein secretion[J]. J Biol Chem,2006,281(43):32587-32595.
[17] PIR?譫G-GARCIA K A,MEADOWS R S,KNOWLES L,et al. Reduced cell proliferation and increased apoptosis are significant pathological mechanisms in a murine model of mild pseudoachondroplasia resulting from a mutation in the C-terminal domain of COMP[J]. Hum Mol Genet,2007,16(17):2072-2088.
[18] POSEY K L,COUSTRY F,VEERISETTY A C,et al. Antisense reduction of mutant COMP reduces growth plate chondrocyte pathology[J]. Mol Ther,2017 ,25(3):705-714.
[19] BUDDE B,BLUMBACH K,YLSTALO J,et al. Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX[J]. Mol Cell Biol,2005 ,25(23):10465-10478.
[20] ROSENBERG K,OLSSON H,M?魻RGELIN M,et al. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen[J]. J Biol Chem,1998,273(32):20397-20403.
[21] ICHIHASHI Y,TAKAGI M,ISHII T,et al. Two novel mutations of COMP in Japanese boys with pseudoachondroplasia[J]. Hum Genome Var,2018,5:12.
[22] BRIGGS M D,BROCK J,RAMSDEN S C,et al . Genotype to phenotype correlations in cartilage oligomeric matrix protein associated chondrodysplasias[J]. Eur J Hum Genet,2014,22(11):1278-1282.
[23] KVANSAKUL M,ADAMS J C,HOHENESTER E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats[J]. EMBO J,2004 ,23(6):1223-1233.
[24] ANILKUMAR N,ANNIS D S,MOSHER D F,et al. Trimeric assembly of the C-terminal region of thrombospondin-1 or thrombospondin-2 is necessary for cell spreading and fascin spike organisation[J]. J Cell Sci,2002,115(Pt 11):2357-2366.
[25] UNGER S,HECHT J T. Pseudoachondroplasia and multiple epiphyseal dysplasia:New etiologic developments[J]. Am J Med Genet,2001,106(4):244-250.
[26] MCKEAND J,ROTTA J,HECHT J T. Natural history study ofpseudoachondroplasia[J]. Am J Med Genet,1996 ,63(2):406-410.
[27] EL-LABABIDI N,ZIK?魣NOV?魣 M,BAXOV?魣 A,et al. Age dependent progression of multiple epiphyseal dysplasia and pseudoachondroplasia due to heterozygous mutations in COMP gene[J]. Prague Med Rep,2020,121(3):153-162.
[28] POSEY K L,HECHT J T. The role of cartilage oligomeric matrix protein(COMP) in skeletal disease[J]. Curr Drug Targets,2008,9(10):869-877.
[29] KENNEDY J,JACKSON G C,BARKER F S,et al. Novel and recurrent mutations in the C-terminal domain of COMP cluster in two distinct regions and result in a spectrum of phenotypes within the pseudoachondroplasia -- multiple epiphyseal dysplasia disease group[J]. Hum Mutat,2005,25(6):593-594.
[30] KANAZAWA H,TANAKA H,INOUE M,et al. Efficacy of growth hormone therapy for patients with skeletal dysplasia[J]. J Bone Miner Metab,2003,21(5):307-310.