[1] HORTON J D,KNOCHELMANN H M,DAY T A,et al. Immune evasion by head and neck cancer: foundations for combination therapy [J]. Trends Cancer,2019,5(4):208-232.
[2] PETERSON A C,RUSSELL J D,BAILEY D J,et al. Parallel reaction monitoring for high resolution and high mass accuracy quantitative,targeted proteomics[J]. Mol Cell Proteomics,2012,11(11):1475-1488.
[3] HANAHAN D,WEINBERG R A. Hallmarks of cancer:the next generation[J]. Cell,2011,144(5):646-674.
[4] LEONE R D,POWELL J D. Metabolism of immune cells in cancer[J]. Nat Rev Cancer,2020,20(9):516-531.
[5] FENDT S M,FREZZA C,EREZ A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy[J]. Cancer Discov,2020,10(12):1797-1807.
[6] LI Z Q,WANG L L,ZHOU J,et al. Integration of transcriptomics and metabolomics profiling reveals the metabolic pathways affected in dictamnine-induced hepatotoxicity in mice[J]. J Proteomics,2020,213:103603.
[7] VAN DER MIJN J C,FU L,KHANI F,et al. Combined metabolomics and genome-wide transcriptomics analyses show multiple HIF1α-induced changes in lipid metabolism in early stage clear cell renal cell carcinoma[J]. Transl Oncol,2020,13(2):177-185.
[8] CHEN Y,NI J,GAO Y,et al. Integrated proteomics and metabolomics reveals the comprehensive characterization of antitumor mechanism underlying Shikonin on colon cancer patient-derived xenograft model[J]. Sci Rep,2020,10(1):14092.
[9] RAFIQ S,YEKU O O,JACKSON H J,et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo[J]. Nat Biotechnol,2018,36(9):847-856.
[10] DE HOON M J,IMOTO S,NOLAN J,et al. Open source clustering software[J]. Bioinformatics,2004,20(9):1453-1454.
[11] SALDANHA A J. Java Treeview--extensible visualization of microarray data[J]. Bioinformatics,2004,20(17):3246-3248.
[12] YU C S,CHEN Y C,LU C H,et al. Prediction of protein subcellular localization[J]. Proteins,2006,64(3):643-651.
[13] YU C S,LIN C J,HWANG J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions[J]. Protein Sci,2004,13(5):1402-1406.
[14] BLUM M,CHANG H Y,CHUGURANSKY S,et al. The InterPro protein families and domains database:20 years on[J]. Nucleic Acids Res,2021,49(D1):D344- D354.
[15] G?觟TZ S,GARCíA-GóMEZ J M,TEROL J,et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Res,2008,36(10):3420-3435.
[16] CHOW L Q M. Head and neck cancer[J]. N Engl J Med,2020,382(1):60-72.
[17] ROTH K G,MAMBETSARIEV I,KULKARNI P,et al. The mitochondrion as an emerging therapeutic target in cancer[J]. Trends Mol Med,2020,26(1):119-134.
[18] LU J R. The Warburg metabolism fuels tumor metastasis[J]. Cancer Metast Rev,2019,38(1-2):157-164.
[19] MAKINOSHIMA H,TAKITA M,MATSUMOTO S,et al. Epidermal growth factor receptor(egfr) signaling regulates global metabolic pathways in egfr-mutated lung adenocarcinoma[J]. J Biol Chem,2014,289(30):20813-20823.
[20] MAKINOSHIMA H,TAKITA M,SARUWATARI K,et al. Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma[J]. J Biol Chem,2015,290(28):17495-17504.
[21] DYRSTAD S E,LOTSBERG M L,TAN T Z,et al. Blocking aerobic glycolysis by targeting pyruvate dehydrogenase kinase in combination with egfr tki and ionizing radiation increases therapeutic effect in non-small cell lung cancer cells[J]. Cancers(Basel),2021,13(5):941.
[22] ZHANGYUAN G,WANG F,ZHANG H,et al. VersicanV1 promotes proliferation and metastasis of hepatocellular carcinoma through the activation of EGFR-PI3K-AKT pathway[J]. Oncogene,2020,39(6):1213-1230.
[23] LEE J H,LIU R,LI J,et al. EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation[J]. Mol Cell,2018,70(2):197-210.
[24] WANG Y,NIE H,LIAO Z,et al. Expression and clinical significance of lactate dehydrogenase a in colon adenocarcinoma[J]. Front Oncol,2021,11:700795.
[25] KHAN A,SIDDIQUI S,HUSAIN S A,et al. Phytocompounds targeting metabolic reprogramming in cancer:an assessment of role,mechanisms,pathways,and therapeutic relevance[J]. J Agricul FoodChem,2021,69(25):6897-6928.
[26] GUO Y,LIANG F,ZHAO F L,et al. Resibufogenin suppresses tumor growth and Warburg effect through regulating miR-143-3p/HK2 axis in breast cancer[J]. Mol Cell Biochemy,2020,466(1-2):103-115.
[27] LV Z T,QI L,HU X H,et al. Identification of a novel glycolysis-related gene signature correlates with the prognosis and therapeutic responses in patients with clear cell renal cell carcinoma[J]. Front Oncol,2021,11:18.
[28] KIM N H,CHA Y H,LEE J,et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress[J]. Nat Commun,2017,8:12.
[29] ZHANG Y M,LIU J K,WONG T Y. The DNA excision repair system of the highly radioresistant bacterium Deinococcus radiodurans is facilitated by the pentose phosphate pathway[J]. Molr Microbiol,2003,48(5):1317-1323.
[30] CHEN Y,XU Q,JI D X,et al. Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia[J]. Tumor Biol,2016,37(5):6027-6034.
[31] UMAR S M,KASHYAP A,KAHOL S,et al. Prognostic and therapeutic relevance of phosphofructokinase platelet-type(PFKP) in breast cancer [J]. Exp Cell Res,2020,396(1):10.
[32] HITOSUGI T,ZHOU L,ARELLANO M,et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth [J]. Can Cell,2012,22(5):585-600.
[33] PENG X C,GONG F M,CHEN Y,et al. Proteomics identification of PGAM1 as a potential therapeutic target for urothelial bladder cancer [J]. J Proteomics,2016,132:85-92.
[34] SUN Q,LI S Z,WANG Y N,et al. Phosphoglyceric acid mutase-1 contributes to oncogenic mTOR-mediated tumor growth and confers non-small cell lung cancer patients with poor prognosis[J]. Cell Death Differ,2018,25(6):1160-1173.