[1] WANG L F,WANG F S,GERSHWIN M E. Human autoimmune diseases:a comprehensive update[J]. J Intern Med,2015,278(4):369-395.
[2] SELDIN M F. The genetics of human autoimmune disease:a perspective on progress in the field and future directions[J]. J Autoimmun,2015,64:1-12.
[3] ISHIGAKI K. Beyond GWAS:from simple associations to functional insights[J]. Semin Immunopathol,2022,44(1):3-14.
[4] VISSCHER P M,WRAY N R,ZHANG Q,et al.10 years of GWAS discovery:biology,function,and translation[J]. Am J Hum Genet,2017,101(1):5-22.
[5] LI Y R,LI J,ZHAO S D,et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases[J]. Nat Med,2015,21(9):1018-1027.
[6] FARH K K,MARSON A,ZHU J,et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants[J]. Nature,2015,518(7539):337-343.
[7] GHOUSSAINI M,MOUNTJOY E,CARMONA M,et al.Open targets genetics:systematic identification of trait-associated genes using large-scale genetics and functional genomics[J]. Nucleic Acids Res,2021,49(D1):D1311-D1320.
[8] MOUNTJOY E,SCHMIDT E M,CARMONA M,et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci[J]. Nat Genet,2021,53(11):1527-1533.
[9] TAM V,PATEL N,TURCOTTE M,et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet,2019,20(8):467-484.
[10] SCHAID D J,CHEN W,LARSON N B. From genome-wide associations to candidate causal variants by statistical fine-mapping[J]. Nat Rev Genet,2018,19(8):491-504.
[11] CANNON M E,MOHLKE K L.Deciphering the emerging complexities of molecular mechanisms at GWAS loci[J]. Am J Hum Genet,2018,103(5):637-653.
[12] BROEKEMA R V,BAKKER O B,JONKERS I H. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era[J]. Open Biol,2020,10(1):190221.
[13] MAURANO M T,HUMBERT R,RYNES E,et al.Systematic localization of common disease-associated variation in regulatory DNA[J]. Science,2012,337(6099):1190-1195.
[14] CROSS-DISORDER GROUP OF THE PSYCHIATRIC GENOMICS CONSORTIUM. Genomic relationships,novel loci,and pleiotropic mechanisms across eight psychiatric disorders[J]. Cell,2019,179(7):1469-1482.e11.
[15] GRAMPP S,PLATT J L,LAUER V,et al. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer[J]. Nat Commun,2016,7:13183.
[16] KUMASAKA N,KNIGHTS A J,GAFFNEY D J. High-resolution genetic mapping of putative causal interactions between regions of open chromatin[J]. Nat Genet,2019,51(1):128-137.
[17] CORRADIN O,SAIAKHOVA A,AKHTAR-ZAIDI B,et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits[J]. Genome Res,2014,24(1):1-13.
[18] GUO C,LUDVIK A E,ARLOTTO M E,et al.Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1[J].Nat Commun,2015,6:6069.
[19] RAO S,YAO Y,BAUER D E.Editing GWAS:experimental approaches to dissect and exploit disease-associated genetic variation[J]. Genome Med,2021,13(1):41.
[20] GUPTA R M,HADAYA J,TREHAN A,et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression[J]. Cell,2017,170(3):522-533.
[1]张苗苗,StruanGrant,HakonHakonarson,等.腰臀比性状的全基因组通路关联分析研究[J].天津医科大学学报,2018,24(02):135.
ZHANG Miao-miao,Struan Grant,Hakon Hakonarson,et al.A genome wide pathway association study of waist-to-hip ratio[J].Journal of Tianjin Medical University,2018,24(04):135.