|本期目录/Table of Contents|

[1]刘晶,刘旭,商希鹏,等.基于Westgard西格玛规则的临床生化项目性能改进方法研究[J].天津医科大学学报,2021,27(05):533-537.
 LIU Jing,LIU Xu,SHANG Xi-peng,et al.Study on performance improvement of clinical biochemical items based on Westgard sigma rules[J].Journal of Tianjin Medical University,2021,27(05):533-537.
点击复制

基于Westgard西格玛规则的临床生化项目性能改进方法研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
27卷
期数:
2021年05期
页码:
533-537
栏目:
技术与方法
出版日期:
2021-09-10

文章信息/Info

Title:
Study on performance improvement of clinical biochemical items based on Westgard sigma rules
文章编号:
1006-8147(2021)05-0533-05
作者:
刘晶12刘旭2商希鹏2刘运德1
(1.天津医科大学医学检验学院,天津 300203;2.天津中医药大学第一附属医院检验科,天津300381)
Author(s):
LIU Jing12LIU Xu2SHANG Xi-peng2LIU Yun-de1
(1.College of Medical Laboratory,Tianjin Medical University,Tianjin 300203,China; 2.Department of Clinical Laboratory,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine,Tianjin 300381,China)
关键词:
Westgard西格玛规则质量目标指数质控策略质量控制
Keywords:
Westgard sigma rules quality goal index quality control strategy quality control procedure
分类号:
R446.1
DOI:
-
文献标志码:
A
摘要:
目的:应用Westgard西格玛规则优化实验室室内质控策略,依据QGI分析生化项目性能不佳原因,提出改进方向以提高临床生化检测项目的性能。方法:收集本实验室室间质量评价报告及室内质控数据,估算偏倚(Bias)、变异系数(CV),计算每个项目西格玛度量值(σ)及质量目标指数(QGI),结合Westgard西格玛规则,确定合理的个性化质控策略。对于性能欠佳的项目,依据QGI明确项目性能不佳的原因,确定改进方向。结果:低浓度水平项目中谷草转氨酶(AST)、肌酸激酶(CK)、α-羟丁酸脱氢酶(HBDH)、总胆固醇(CHOL)、淀粉酶(Amy)(σ≥6)可达世界一流,乳酸脱氢酶(LDH)、甘油三酯(TG)、钠(Na)、氯(Cl)、血糖(GLU)、尿酸(UA)、镁(Mg)(4≤σ<6)可以达标,尿素(Urea)、总蛋白(TP)、白蛋白(ALB)、γ-谷氨酰基转移酶(GGT)、碱性磷酸酶(ALP)(σ﹤3)需查找原因立即纠正;高浓度水平项目中肌酐(Cr)、尿酸(UA)、谷丙转氨酶(ALT)、AST、CK、LDH、HBDH、磷(P)、CHOL、TG、Mg、Amy(σ≥6)可达世界一流,钾(K)、ALP、GLU(4≤σ<6)可以达标,TP、ALB、GGT(σ﹤3)需立即纠正。QGI分析显示3个项目需提高准确度,7个项目需提高精密度,2个项目准确度和精密度均需提高。改进后,6个项目提高至性能状态良好的水平,检测项目的σ值显著提高,差异具有统计学意义(t=5.42,P﹤0.05)。结论:联合应用Westgard西格玛规则及QGI分析,可有效提高临床生化检测项目的性能,指导检验质量持续改进。
Abstract:
Objective: To improve the performance of clinical biochemical items,and optimize the laboratory internal quality control strategy by the method of Westgard sigma rules analyze,causes of poor performance and improvement direction by the method of QGI. Methods: The annual quality evaluation report and internal quality control data of our laboratory were collected. Then,the Bias and CV were estimated,Testing items of sigma metrics and QGI(quality objective index)were calculated. Based on Westgard Sigma rules,a reasonable personalized quality control strategy was determined. For projects with poor performance,the reasons for poor performance of projects were identified according to QGI,and the improvement direction was determined. Results: In low concentration projects,aspertate aminotransferase(AST),creatine kinase(CK),hydroxybutyrate dehydrogenase(HBDH),cholesterol(CHOL),amylase(Amy) (σ≥6) could reach the world first-class level,lactic dehydrogenase(LDH),tri-glyceride(TG),Na(Sodium),Cl(Chlorine),glucose(GLU),uric acid(UA),magnesium(Mg) (4≤σ<6)were standard,urea nitrogen(Urea),total protein(TP),albumin(ALB),glutamyltransferase(GGT),alkaline phosphatase(ALP) (σ<3) needed to find out reason and correct immediately. In high concentration project,creatinine (Cr),UA,alanine transaminase(ALT),AST,CK,LDH,HBDH,phosphorus(P),CHOL,TG,Mg,Amy(σ≥6) were world class, potassium(K),ALP,GLU(4≤σ<6)were standard,and TP,ALB,GGT(σ<3)had serious problems that need to be corrected. QGI analysis showed that 3 items were needed to increase accuracy,7 items were needed to increase precision,2 items were needed to increase accuracy and precision simultaneously.After improvement,6 items had improved in good condition,the sigma value of underperformed items had increased significantly,the difference was statistically significant(t=5.42,P<0.05). Conclusion: Combined application of Westgard Sigma rules and QGI analysis,can effectively improve the performance level of clinical biochemical test items,and guide the continuous improvement of test quality.

参考文献/References:

[1] SHU Y,CHENG P. Targeting tumor-associated macrophages for cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer,2020, 1874 (2):188434
[2] CHEN Y,SONG Y,DU W,et al. Tumor-associated macrophages:an accomplice in solid tumor progression[J]. J Biomed Sci,2019,26(1):78
[3] MANTOVANI A,MARCHESI F,JAILLON S,et al. Tumor-associated myeloid cells:diversity and therapeutic targeting[J]. Cell Mol Immunol,2021,18 (3):566
[4] WU K,LIN K,LI X,et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol,2020,11(1731):1
[5] QI Y,LIU B,SUN Q,et al. Immune checkpoint targeted therapy in glioma:status and hopes[J]. Front Immunol,2020,11(578877):1
[6] DE LEO A,UGOLINI A,Veglia F. Myeloid cells in glioblastoma microenvironment[J]. Cells,2020,10 (1):18
[7] LAVIRON M,BOISSONNAS A. Ontogeny of tumor-associated macrophages[J]. Front Immunol,2019,10 (1799):1
[8] OCHOCKA N,SEGIT P,WALENTYNOWICZ K A,et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages[J]. Nat Commun,2021,12 (1):1151
[9] YANG S,LIU Q,LIAO Q. Tumor-associated macrophages in pancreatic ductal adenocarcinoma:origin,polarization,function,and reprogramming[J]. Front Cell Dev Biol,2020,8 (607209):1
[10] WANG N,WANG S,WANG X,et al. Research trends in pharmacological modulation of tumor-associated macrophages[J]. Clin Translat Med,2021,11 (1):288
[11] ZHOU J,TANG Z,GAO S,et al. Tumor-associated macrophages:recent insights and therapies[J]. Front Oncol,2020,10 (188):1
[12] LARIONOVA I,TUGUZBAEVA G,PONOMARYOVA A,et al. Tumor-associated macrophages in human breast,colorectal,lung,ovarian and prostate cancers[J]. Front Oncol,2020,10 (566511):1
[13] YUNNA C,MENGRU H,LEI W,et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol,2020,877 (173090):1
[14] MEHRAJ U,QAYOOM H,MIR M A. Prognostic significance and targeting tumor-associated macrophages in cancer:new insights and future perspectives[J]. Breast cancer,2021,28 (3):1
[15] 孙凤环,陈健,张鹏. 单细胞测序在肿瘤基因检测中的研究进展[J]. 同济大学学报(医学版),2019,40 (1):123
[16] LIU Y,WANG R. Immunotherapy targeting tumor-associated macrophages[J]. Front Med (Lausanne),2020,7 (583708):1
[17] XIANG X,WANG J,LU D,et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther,2021,6 (1):75
[18] PATHRIA P,LOUIS T L,Varner J A. Targeting tumor-associated macrophages in cancer[J]. Trends Immunol,2019,40 (4):310
[19] GARCIA-ORTIZ A,RODRIGUEZ-GARCIA Y,ENCINAS J,et al. The role of tumor microenvironment in multiple myeloma development and progression[J]. Cancers (Basel),2021,13 (2):217
[20] JALIL A R,ANDRECHAK J C,DISCHER D E. Macrophage checkpoint blockade:results from initial clinical trials,binding analyses,and CD47-SIRPα structure-function[J]. Antib Ther,2020,3(2):80
[21] HUTTER G,THERUVATH J,GRAEF C M,et al. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma[J]. Proc Natl Acad Sci U S A,2019,116 (3):997

相似文献/References:

备注/Memo

备注/Memo:
作者简介 刘晶(1989-),女,主管技师,硕士在读, 研究方向:临床检验诊断学;通信作者:刘运德,E-mail:yundeliu@126.com。
更新日期/Last Update: 2021-09-01