|本期目录/Table of Contents|

[1]窦妍 综述,于春水 审校.X射线激活纳米系统协同肿瘤放疗研究进展[J].天津医科大学学报,2021,27(03):316-318.
点击复制

X射线激活纳米系统协同肿瘤放疗研究进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
27卷
期数:
2021年03期
页码:
316-318
栏目:
综述
出版日期:
2021-05-30

文章信息/Info

Title:
-
文章编号:
1006-8147(2021)03-0316-03
作者:
窦妍 综述于春水 审校
天津医科大学总医院医学影像科,天津市功能影像重点实验室,天津300052
Author(s):
-
关键词:
X射线X射线激活纳米系统肿瘤放疗协同治疗
Keywords:
-
分类号:
R318.08
DOI:
-
文献标志码:
A
摘要:
X射线由于极好的组织穿透深度而被广泛应用于肿瘤放疗,但由于肿瘤X射线衰减系数差及低氧辐射耐受,导致辐射剂量过量而增加辐射毒性。近年来,X射线激活纳米系统取得了重大进展,在X射线辐射作用下,不仅可直接增强辐射效应,还可通过携带和释放药物及功能分子实现放疗与其他治疗方式协同,从而在较低辐射剂量下提高深部肿瘤疗效并降低副作用。通过综述X射线激活纳米系统协同肿瘤放疗的最新进展,重点介绍不同类型的协同疗法,并对所面临的技术挑战进行探讨。
Abstract:
-

参考文献/References:

[1] Liu Y,Zhang P C,Li F F,et al. Metal-based nanoEnhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells[J]. Theranostics,2018,8(7):1824
[2] Rey S,Schito L,Koritzinsky M,et al. Molecular targeting of hypoxia in radiotherapy[J]. Adv Drug Deliv Rev,2017,109:45
[3] Wang H,Mu X,He H,et al. Cancer radiosensitizers[J]. Trends Pharmacol Sci,2018,39(1):24
[4] Lim E K,Kim T,Paik S,et al. Nanomaterials for theranostics:recent advances and future challenges[J]. Chem Rev,2015,115(1):327
[5] Chen X F,Song J B,Chen X Y,et al. X-ray-activated nanosystems for theranostic applications[J]. Chem Soc Rev,2019,48(11):3073
[6] Song G,Cheng L,Chao Y,et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J]. Adv Mater,2017, 29(32):1700996
[7] Xie J,Gong L J,Zhu S,et al. Emerging strategies of nanomaterial-mediated tumor radiosensitization[J]. Adv Mater,2019,31(3):e1802244
[8] Song G S,Chen Y Y,Liang C,et al. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy[J]. Adv Mater,2016,28(33):7143
[9] Lu N,Fan W P,Yi X,et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy[J]. ACS Nano,2018, 12(2):1580
[10] Zhou Z,Song J,Nie L M,et al. Reactive Oxygen species generating systems meeting challenges of photodynamic cancer therapy[J]. Chem Soc Rev,2016,45(23):6597
[11] Fan W,Huang P,Chen X. Overcoming the Achilles′ heel of photodynamic therapy[J]. Chem Soc Rev,2016,45(23):6488
[12] Sun W,Zhou Z,Pratx G,et al. Nanoscintillator-mediated X-ray induced photodynamic therapy for deep-seated tumors: from concept to biomedical applications[J]. Theranostics,2020,10(3):1296
[13] Popovich K,Procházková L,Pelikánová I T,et al. Preliminary study on singlet oxygen production using CeF3:Tb3+@SiO2-PpIX[J]. Radiat Meas,2016,90:325
[14] Dou Y,Liu Y,Zhao F S,et al. Radiation-responsive scintillating nanotheranostics for reduced hypoxic radioresistance under ROS/NO-mediated tumor microenvironment regulation[J]. Theranostics,2018,8(21):5870
[15] Sun W,Shi T H,Luo L,et al. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy[J]. Adv Mater,2019,31(16): e1808024
[16] Liang S,Li P P,Wen Y,et al. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy[J]. Adv Funct Mater,2018,28(18):1707496
[17] Sun W,Luo L,Feng Y S,et al. Aggregation-induced emission gold clustoluminogens for enhanced low-dose X-ray-induced photodynamic therapy[J]. Angew Chem Int Ed Engl,2020,59(25):9914
[18] Blanco E,Shen H,Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nat Biotechnol,2015,33(9):941
[19] Wang Z,Xue X,He Y X,et al. Novel redox-responsive polymeric magnetosomes with tunable magnetic resonance property for in vivo drug release visualization and dual-modal cancer therapy[J]. Adv Funct Mater,2018,28(33):1802159
[20] Wang Z,Chang Z M,Shao D,et al. Janus gold triangle-mesoporous silica nanoplatforms for hypoxia-activated radio-chemo-photothermal therapy of liver cancer[J]. ACS Appl Mater Interfaces,2019, 11(38):34755
[21] Luo L Y,He H Y,Li C H,et al. Near-infrared responsive bimetallic nanovesicles for enhanced synergistic chemophotothermal therapy[J]. ACS Biomater Sci Eng,2019,5(3):1321
[22] Zhou Z,Chan A,Wang Z T,et al. Synchronous chemoradiation nanovesicles by X-ray triggered cascade of drug release[J]. Angew Chem Int Ed Engl,2018,57(28):8463
[23] Spirou S V,Basini M,Lascialfari A,et al. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice (?覮)[J]. Nanomaterials (Basel),2018,8(6):401
[24] Rajaee A,Wensheng X,Zhao L,et al. Multifunctional bismuth ferrite nanoparticles as magnetic localized dose enhancement in radiotherapy and imaging[J]. J Biomed Nanotechnol,2018,14(6):1159
[25] Yong W,Wu Y Y,Liu Y J,et al. BSA-Mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy[J]. Adv Funct Mater,2016,26(29):5335
[26] Du J,Gu Z,Yan L,et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi(2) Se(3) nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues[J]. Adv Mater,2017,29(34):1701268
[27] Topalian S L,Drake C G,Pardoll D M. Immune checkpoint blockade:a common denominator approach to cancer therapy[J]. Cancer Cell,2015,27(4):450
[28] Song X,Xu J,Liang C,et al. Self-supplied tumor oxygenation through separated liposomal delivery of H(2)O(2) and catalase for enhanced radio-immunotherapy of cancer[J]. Nano Lett,2018,18(10):6360
[29] Ngwa W,Irabor O C,Schoenfeld J D,et al. Using immunotherapy to boost the abscopal effect[J]. Nat Rev Cancer,2018,18(5):313
[30] Lu K,He C B,Guo N,et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy[J]. Nat Biomed Eng,2018, 2(8):600

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家自然科学基金青年科学基金(81801828)
作者简介 窦妍(1988-),女,助理研究员,博士,研究方向:纳米多功能系统;
通信作者:于春水,E-mail:douyan@tmu.edu.cn。
更新日期/Last Update: 2021-05-30