|本期目录/Table of Contents|

[1]张才 综述,朱仲玲,阎昭 审校.EP300/CBP在肿瘤中的研究现状和进展[J].天津医科大学学报,2020,26(05):502-505.
点击复制

EP300/CBP在肿瘤中的研究现状和进展(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年05期
页码:
502-505
栏目:
综述
出版日期:
2020-09-20

文章信息/Info

Title:
-
文章编号:
1006-8147(2020)05-0502-04
作者:
张才1 综述朱仲玲1阎昭12 审校
(1.天津医科大学肿瘤医院临床药理研究室,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津300060;2.天津市药物临床研究技术创新中心,天津300182)
Author(s):
-
关键词:
EP300/CBP抑癌作用促癌作用耐药结构域抑制剂
Keywords:
-
分类号:
R73
DOI:
-
文献标志码:
A
摘要:
EP300和CBP是组蛋白乙酰化转移酶,不仅具有乙酰化转移酶的活性,还能够与不同的转录因子结合形成不同的转录调控复合物,调控靶基因的表达。不同的突变位点和不同的转录因子的结合不 仅能够促进肿瘤的进展,也可以抑制肿瘤的恶性表型,和不同转录因子的结合还影响肿瘤细胞对药物的敏感性,其重要的溴结构域抑制剂也越来越成为药物研发的热点。
Abstract:
-

参考文献/References:

[1] Tropberger P, Pott S, Keller C, et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer[J]. Cell, 2013, 152(4): 859
[2] Delvecchio M, Gaucher J, Aguilar-Gurrieri C, et al. Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation[J]. Nat Struct Mol Biol, 2013, 20(9): 1040
[3] Roelfsema J H, Peters D J. Rubinstein-Taybi syndrome: clinical and molecular overview[J]. Expert Rev Mol Med, 2007, 9(23): 1
[4] Miller R W, Rubinstein J H. Tumors in rubinstein-taybi syndrome[J]. Am J Med Genet, 1995, 56(1): 112
[5] Gayther S A, Batley S J, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers[J]. Nat Genet, 2000, 24(3): 300
[6] Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR-Ras-Erk signalling and suppresses increased Ras-Erk signalling-induced tumour formation in mice[J]. J Pathol, 2019, 249(1): 39
[7] Devan J, Janikova A, Mraz M. New concepts in follicular lymphoma biology: from BCL2 to epigenetic regulators and non-coding RNAs[J]. Semin Oncol, 2018, 45(5/6): 291
[8] Mata E, Diaz-Lopez A, Martin-Moreno A M, et al. Analysis of the mutational landscape of classic Hodgkin lymphoma identifies disease heterogeneity and potential therapeutic targets[J]. Oncotarget, 2017, 8(67): 111386
[9] Qian J, Zhao S, Zou Y, et al. Genomic underpinnings of tumor behavior in in situ and early lung adenocarcinoma[J]. Am J Respir Cri Care Med, 2020, 201(6): 697
[10] Dancy B M, Cole P A. Protein lysine acetylation by p300/CBP[J]. Chem Rev, 2015, 115(6): 2419
[11] Grossman S R. p300/CBP/p53 interaction and regulation of the p53 response [J]. Eur J Biochem, 2001,268(10): 2773
[12] Jeon B N, Yoon J H, Han D, et al. ZNF509S1 downregulates PUMA by inhibiting p53K382 acetylation and p53-DNA binding[J]. Biochim Biophys Acta Gene Regul Mech, 2017,1860(9): 962
[13] Pao G M, Janknecht R, Ruffner H, et al. CBP/p300 interact with and function as transcriptional coactivators of BRCA1[J]. Proc Nati Acad Sci U S A , 2000, 97(3): 1020
[14] Nishihara A, Hanai J I, Okamoto N, et al. Role of p300, a transcriptional coactivator, in signalling of TGF-beta[J]. Genes Cells, 1998, 3(9): 613
[15] Di Leo L, Vegliante R, Ciccarone F, et al. Forcing ATGL expression in hepatocarcinoma cells imposes glycolytic rewiring through PPAR-alpha/p300-mediated acetylation of p53[J]. Oncogene, 2019, 38(11): 1860
[16] Katoh I, Maehata Y, Moriishi K, et al. C-terminal alpha domain of p63 binds to p300 to coactivate beta-catenin[J]. Neoplasia, 2019, 21(5): 494
[17] Seoane J, Gomis R R. TGF-β family signaling in tumor suppression and cancer progression[J]. Cold Spring Harb Perspect Biol, 2017, 9(12): a022277
[18] Ringel A E, Wolberger C. A new RING tossed into an old HAT[J]. Structure, 2013, 21(9): 1479
[19] Forbes S A, Beare D, Gunasekaran P, et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer[J]. Nucleic Acids Res, 2015, 43: D805
[20] Vempati R K, Jayani R S, Notani D, et al. p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals[J]. J Biol Chem, 2010, 285(37): 28553
[21] Wang R, He Y, Robinson V, et al. Targeting lineage-specific MITF pathway in human melanoma cell lines by A-485, the selective small-molecule inhibitor of p300/CBP[J]. Mol Cancer Ther, 2018, 17(12): 2543
[22] Wei J, Yang Y, Lu M, et al. Recent advances in the discovery of HIF-1α-p300/CBP inhibitors as anti-cancer agents[J]. Mini Rev Med Chem, 2018, 18(4): 296
[23] No authors listed. The leukemia-driving fusion protein TCF3-HLF is regulated by EP300[J]. Cancer Discov, 2020, 10(1): 12
[24] Mahmud Z, Asaduzzaman M, Kumar U, et al. Oncogenic EP300 can be targeted with inhibitors of aldo-keto reductases[J]. Biochem Pharmacol, 2019, 163: 391
[25] Takeuchi A, Shiota M, Tatsugami K, et al. p300 mediates cellular resistance to doxorubicin in bladder cancer[J]. Mol Med Rep, 2012, 5(1): 173
[26] Zhu Y X, Shi C X, Bruins L A, et al. Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4[J]. Blood Cancer J, 2019, 9(2): 19
[27] Mahmud Z, Gomes A R, Lee H J, et al. EP300 and SIRT1/6 Co-regulate lapatinib sensitivity via modulating FOXO3-acetylation and activity in breast cancer[J]. Cancers, 2019, 11(8): 1067
[28] Yang H, Pinello C E, Luo J, et al. Small-molecule inhibitors of acetyltransferase p300 identified by high-throughput screening are potent anticancer agents[J]. Mol Cancer Ther, 2013, 12(5): 610
[29] Chan K C, Chan L S, Ip J C, et al. Therapeutic targeting of CBP/beta-catenin signaling reduces cancer stem-like population and synergistically suppresses growth of EBV-positive nasopharyngeal carcinoma cells with cisplatin[J]. Sci Rep, 2015, 5: 9979
[30] Ntranos A, Casaccia P. Bromodomains: translating the words of lysine acetylation into myelin injury and repair[J]. Neurosci Lett, 2016, 625:4
[31] Ebrahimi A, Sevinc K, Gurhan Sevinc G, et al. Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming[J]. Nat Chem Biol, 2019, 15(5): 519
[32] de Almeida Nagata D E, Chiang E Y, Jhunjhunwala S, et al. Regulation of tumor-associated myeloid cell activity by CBP/EP300 bromodomain modulation of H3K27 acetylation[J]. Cell Rep, 2019, 27(1): 269
[33] Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, et al. CREBBP/EP300 bromodomain inhibition affects the proliferation of AR-positive breast cancer cell lines[J]. Mol Cancer Res, 2019, 17(3): 720
[34] Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, et al. CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation[J]. Epigenetics Chromatin, 2018, 11(1): 30
[35] Zou L J, Xiang Q P, Xue X Q, et al. Y08197 is a novel and selective CBP/EP300 bromodomain inhibitor for the treatment of prostate cancer[J]. Acta Pharmacol Sin, 2019, 40(11): 1436

相似文献/References:

备注/Memo

备注/Memo:
基金项目 大数据环境下真实世界研究辅助肿瘤新药临床研发的技术平台建设(18ZXXYSY00070)
作者简介 张才(1988-),男,硕士在读,研究方向:肿瘤药理学;
通信作者:阎昭,E- mail:yanzhaopaper@163.com。
更新日期/Last Update: 2020-09-18