|本期目录/Table of Contents|

[1]熊金彪,郭高超,曹艺耀,等.探索替莫唑胺联合amlexanox对胶质瘤细胞的作用效果及机制[J].天津医科大学学报,2020,26(05):401-407.
 XIONG Jin-biao,GUO Gao-chao,CAO Yi-yao,et al.Effect and mechanism of temozolomide combined with amlexanox on human glioblastoma cells[J].Journal of Tianjin Medical University,2020,26(05):401-407.
点击复制

探索替莫唑胺联合amlexanox对胶质瘤细胞的作用效果及机制(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年05期
页码:
401-407
栏目:
基础医学
出版日期:
2020-09-20

文章信息/Info

Title:
Effect and mechanism of temozolomide combined with amlexanox on human glioblastoma cells
文章编号:
1006-8147(2020)05-0401-07
作者:
熊金彪 郭高超曹艺耀陈旨娟黄强杨卫东
(天津医科大学总医院神经外科,天津300052)
Author(s):
XIONG Jin-biao GUO Gao-chao CAO Yi-yao CHEN Zhi-juan HAUNG Qiang YANG Wei-dong
(Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin 300052, China)
关键词:
amlexanox替莫唑胺胶质瘤p-AktIKBKE化学耐药性
Keywords:
amlexanox temozolomide glioblastoma p-Akt IKBKE chemoresistance
分类号:
R730.264
DOI:
-
文献标志码:
A
摘要:
目的:探索替莫唑胺(TMZ)联合amlexanox对胶质瘤细胞的作用效果及机制。方法:本研究分为体外和体内实验,其中体外实验分为4组:对照(NC)组、amlexanox组、TMZ组和TMZ+amlexanox 组,包括检测细胞增殖能力的cell counting kit-8(CCK-8)实验、检测细胞侵袭和迁移的细胞划痕和Transwell实验及检测核因子κ-B激酶抑制剂(IKBKE)及蛋白激酶B(Akt)通路蛋白质变化的 Western印迹实验;体内实验分为3组:NC组、TMZ组和TMZ+amlexanox组,包括颅内成瘤实验和免疫组织化学染色(IHC)实验。结果:与amlexanox组、TMZ组相比,TMZ联合amlexanox组U87 MG和原代细胞 增殖能力明显受抑制、划痕愈合面积显著降低(P< 0.01)。Transwell侵袭和迁移实验表明,TMZ+amlexanox组穿出小室细胞数量显著降低(P< 0.01)。Western印迹实验结果显示,TMZ联合amlexanox组 Akt和哺乳动物雷帕霉素靶蛋白(mTOR)活性明显受抑制。动物实验表明,TMZ联合amlexanox组裸鼠颅内肿瘤生长显著抑制(P < 0.01),颅内肿瘤动物模型的生存时间延长(由21 d延长至31 d);IHC 结果显示,TMZ联合amlexanox组肿瘤标本中磷酸化Akt(p-Akt)、磷酸化mTOR(p-mTOR)表达量明显下降。结论:TMZ联合amlexanox能显著抑制U87 MG和原代细胞增殖、迁移和侵袭能力,而且二者联合 能显著抑制裸鼠颅内肿瘤生长并延长裸鼠生存时间。该作用机制可能是amlexanox在一定程度上通过抑制IKBKE活性逆转TMZ诱导Akt激活,进而降低胶质瘤细胞对TMZ的耐药性。
Abstract:
Objective: To evaluate the efficacy of combined therapy with temozolomide(TMZ) and amlexanox for human glioblastoma cells.Methods: This study was divided as experiments in vitro and in vivo. In vitro, all assays were divided into four groups: negative control (NC) group, amlexanox group, TMZ group and TMZ+amlexanox group, including cell counting kit-8(CCK-8) for determining glioblastoma cells viability, cell wound scratch and Transwell assays for assessing ability of glioblastoma cells on migration and invasion, Western-blot for detecting changes of inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE) and relative proteins in protein kinase B (Akt) signal pathway. In vivo, all assays were divided into three groups: NC group, TMZ group and TMZ+amlexanox group, including establishment of intracranial tumor models and immunohistochemistry(IHC) assay. Results: The treatment combined with TMZ and amlexanox obviously inhibited the proliferation of U87MG and primary glioma cell compared with single agent treatment. Moreover, the treatment with TMZ and amlexanox significantly reduced the scratch healing area(P<0.01). The results of transwell invasion and migration assays showed that TMZ combined amlexanox significantly reduced the number of cells penetrated out of the chamber(P<0.01). Western-blot showed that TMZ combined amlexanox could significantly inhibit the activity of Akt and mammalian rapamycin target protein(mTOR). Animal experiments showed that TMZ combined amlexanox significantly inhibited intracranial tumor growth (P<0.01) and prolonged survival of animalswith intracranial tumors (from 21 d to 31 d). IHC results showed that in the group treated with combined drugs, the expression of phosphorylation of Akt(p-Akt) and phosphorylation of mTOR(p-mTOR) were obviously decreased. Conclusion: Combined treatment with TMZ and amlexanox results in significant inhibition of cell viability, migration and invasion in primary glioma cells and in the human glioma cell line, U87 MG. Moreover, combined treatment significantly inhibits the growth of intracranial tumor and prolonged the survival time of mice with tumors. The mechanism by which amlexanox sensitized glioma cells to TMZ may be that amlexanox suppressed activity of IKBKE and partially reversed TMZ-induced Akt activation.

参考文献/References:

[1] Uribe D, Torres A, Rocha J D, et al. Multidrug resistance in glioblastoma stem-like cells: role of the hypoxic microenvironment and adenosine signaling[J]. Mol Aspects Med, 2017, 55:140
[2] Guan H, Zhang H, Cai J, et al. IKBKE is over-expressed in glioma and contributes to resistance of glioma cells to apoptosis via activating NF-kappaB[J]. J Pathol, 2011,223(3):436
[3] Yu Z, Xie G, Zhou G, et al. NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells [J]. Cancer Lett, 2015, 367(1):58
[4] Qian Z, Zhou S, Zhou Z,et al. miR146b5p suppresses glioblastoma cell resistance to temozolomide through targeting TRAF6[J]. Oncol Rep, 2017, 38(5):2941
[5] Stritzelberger J, Distel L, Buslei R, et al. Acquired temozolomide resistance in human glioblastoma cell line U251 is caused by mismatch repair deficiency and can be overcome by lomustine[J]. Clin Transl Oncol, 2018, 20(4):508
[6] Liu J F, Tsao Y T, Hou C H. Fractalkine CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1 PI3K Akt NF-κB pathway in human osteosarcoma[J]. Oncotarget, 2017, 8: 54136
[7] Hirose Y, Katayama M, Mirzoeva O K, et al. Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence[J]. Cancer Res, 2005, 65(11): 4861
[8] Xie X, Zhang D, Zhao B, et al. IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation[J]. Proc Natl Acad Sci U S A, 2011, 108(16): 6474
[9] Bell J. Amlexanox for the treatment of recurrent aphthous ulcers[J]. Clin Drug Invest, 2005, 25 (9): 555
[10] Makino H, Saijo T, Ashida Y,et al. Mechanism of action of an antiallergic agent, amlexanox(AA-673), in inhibiting histamine release from mast cells[J]. Int Arch Allergy Aappl Immunol, 1987, 82(1): 66
[11] Beyett T S, Gan X, Reilly S M, et al. Carboxylic acid derivatives of amlexanox display enhanced potency toward TBK1 and IKKepsilon and reveal mechanisms for selective inhibition[J]. Mol Pharmacol, 2018, 94(4):1210
[12] Oral E A, Reilly S M, Gomez A V, et al. Inhibition of IKKε and TBK1 improves glucose control in a subset of patients with type 2 diabetes[J]. Cell Metab, 2017, 26(1):157
[13] Liu Y, Lu J, Zhang Z,et al. Amlexanox, a selective inhibitor of IKBKE, generates anti-tumoral effects by disrupting the Hippo pathway in human glioblastoma cell lines[J]. Cell Death Dis, 2017, 8(8):e3022
[14] Drablos F, Feyzi E, Aas P A, et al. Alkylation damage in DNA and RNA--repair mechanisms and medical significance[J]. DNA Repair (Amst), 2004, 3(11):1389
[15] Yang W B, Chuang J Y, Ko C Y,et al. Dehydroepiandrosterone induces temozolomide resistance through modulating phosphorylation and acetylation of Sp1 in glioblastoma[J]. Mol Neurobiol, 2019, 56(4):56(4):2301
[16] Guo J P, Coppola D, Cheng J Q. IKBKE protein activates Akt independent of phosphatidylinositol 3-kinase/PDK1/mTORC2 and the pleckstrin homology domain to sustain malignant transformation[J]. J Biol Chem, 2011, 286(43):37389
[17] Caporali S, Levati L, Starace G, et al. AKT is activated in an ataxia-telangiectasia and Rad3-related-dependent manner in response to temozolomide and confers protection against drug-induced cell growth inhibition[J]. Mol Pharmacol, 2008, 74(1):173
[18] Zou W, Ma X, Hua W,et al. Caveolin-1 mediates chemoresistance in cisplatin-resistant ovarian cancer cells by targeting apoptosis through the Notch-1/Akt/NF-kappaB pathway [J]. Oncol Rep, 2015, 34(6): 3256
[19] Bi Y, Li H, Yi D, et al. Cordycepin augments the chemosensitivity of human glioma cells to temozolomide by activating AMPK and inhibiting the AKT signaling pathway[J]. Mol Pharm, 2018,15(11):4912
[20] Wu Y, Dong L, Bao S, et al. FK228 augmented temozolomide sensitivity in human glioma cells by blocking PI3K/AKT/mTOR signal pathways[J]. Biomed Pharmacother, 2016, 84: 462
[21] Lee J E, Lim J H, Hong Y K, et al. High-dose metformin plus temozolomide shows increased anti-tumor effects in glioblastoma in vitro and in vivo compared with monotherapy [J]. Cancer Rese Treat, 2018, 50(4):1331
[22] Zhou W, Wang J, Qi Q, et al. Matrine induces senescence of human glioblastoma cells through suppression of the IGF1/PI3K/AKT/p27 signaling pathway[J]. Cancer Med, 2018, 7 (9): 4729
[23] Reilly S M, Chiang S H, Decker S J, et al. An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice[J]. Nat Med, 2013, 19(3): 313
[24] Challa S, Guo J P, Ding X, et al. IKBKE is a substrate of EGFR and a therapeutic target in non-small cell lung cancer with activating mutations of EGFR[J]. Cancer Res, 2016,76(15):4418

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家自然科学基金资助项目(81572490)
作者简介 熊金彪(1991-),男,硕士在读,研究方向:肿瘤基础研究;
通信作者:黄强,E-mail:huangqiang209@163.com;杨卫东,E-mail:yangweidongong@sina.com。
更新日期/Last Update: 2020-09-18