[1] Hsu S H, Cao Y, Huang K, et al. Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy[J]. Phys Med Biol, 2013, 58(23):8420
[2] Hofmann M, Pichler B, Bernhard Sch?觟lkopf, et al. Towards quantitative PET/MRI: A review of MR-based attenuation correction techniques[J]. Eur J Nucl Med Mol Imaging, 2009, 36 (Suppl 1):S94
[3] Chen L, Nguyen T B, Jones E, et al. Magnetic resonance-based treatment planning for prostate intensity-modulated radiotherapy: creation of digitally reconstructed radiographs[J]. Int J Radiat Oncol Biol Phys, 2007, 68(3):904
[4] Edmund J M, Kjer H M, Leemput K V, et al. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times[J]. Phys Med Biol, 2014, 59(23):7504
[5] Schreibmann E, Nye J A, Schuster D M, et al. MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration[J]. Med Phys, 2010, 37(5):2104
[6] Dowling J A, Lambert J, Parker J, et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2012, 83(1):e6
[7] Uh J, Merchant T E, Li Y, et al. MRI-based treatment planning with pseudo CT generated through atlas registration[J]. Med Phys, 2014, 41(5):051711
[8] Demol B, Boydev C, Korhonen J, et al. Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T1-weighted MR images[J]. Med Phys, 2016, 43(12):6566
[9] Gudur MSR, Hara W, Le Q T, et al. A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning[J]. Phys Med Biol, 2014, 59(21):6597
[10] Han X. MR-based synthetic CT generation using a deep convolutional neural network method[J]. Med Phys, 2017, 44(4):1409
[11] Sled J G, Zijdenbos A P, Evans A C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data[J]. IEEE T Med Imaging, 1998, 17(1):89
[12] Otsu N. A threshold selection method from gray-level histograms [J]. IEEE Trans Sys Man Cybern, 2007, 9(1):62
[13] 周飞燕, 金林鹏, 董军.卷积神经网络研究综述[J].计算机学报,2017, 40(7):5
[14] Kingma D P, Ba J. Adam: A method for stochastic optimization[C]//LeCun Y. Proceedings of the 3rd international conference on learning representations. San Diego: OALib, 2015:2
[15] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Blei D. Proceedings of the 32nd international conference on international conference on machine learning. Lille: JMLR, 2015:449
[16] 胡永生,张立毅.基于非局部自相似图像块字典学习的伪CT图像预测[J].信号处理, 2017,33(3):347
[1]孙静,蔡跃增.肋骨少见单发膨胀性病变的影像学诊断[J].天津医科大学学报,2013,19(05):421.
[2]侯 萍,张 虹.泪腺腺样囊性癌93例临床分析[J].天津医科大学学报,2016,22(06):528.
[3]徐学鑫,赵 滨,胡晓丽.儿童颌面部Kimura病1例[J].天津医科大学学报,2019,25(01):84.
[4]刘广宇,孙浩然,白人驹.多序列MRI检查在胆系结石诊断中的应用价值[J].天津医科大学学报,2021,27(03):301.
LIU Guang-yu,SUN Hao-ran,BAI Ren-ju.The clinical value of multiple sequence MRI in detecting gallstones[J].Journal of Tianjin Medical University,2021,27(02):301.
[5]温鹏,韩玉娟,杨剑,等.肝细胞癌患者缩短普美显强化MRI检查中肝胆期时间的探索[J].天津医科大学学报,2022,28(04):433.
WEN Peng,HAN Yu-juan,YANG Jian,et al.Exploration of shortening the duration of hepatobiliary phase in EOB enhanced MRI for patients with hepatocellular carcinoma[J].Journal of Tianjin Medical University,2022,28(02):433.