|本期目录/Table of Contents|

[1]刘玉堂,韩玉,薛志孝.高频不可逆电穿孔的消融参数与消融有效性关系的研究[J].天津医科大学学报,2020,26(02):108-113,117.
 LIU Yu-tang,HAN Yu,XUE Zhi-xiao.Study on the relationship between ablation parameters and ablation effectiveness of high frequency irreversible electroporation[J].Journal of Tianjin Medical University,2020,26(02):108-113,117.
点击复制

高频不可逆电穿孔的消融参数与消融有效性关系的研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
26卷
期数:
2020年02期
页码:
108-113,117
栏目:
基础医学
出版日期:
2020-04-30

文章信息/Info

Title:
Study on the relationship between ablation parameters and ablation effectiveness of high frequency irreversible electroporation
文章编号:
1006-8147(2020)02-0108-07
作者:
刘玉堂韩玉薛志孝
(天津医科大学生物医学工程与技术学院医学仪器教研室,天津 300070)
Author(s):
LIU Yu-tang HAN Yu XUE Zhi-xiao
(Department of Medical Instruments, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China)
关键词:
高频不可逆电穿孔参数脉宽方式肿瘤消融
Keywords:
high frequency irreversible electroporation parameters pulse width mode tumor ablation
分类号:
R318
DOI:
-
文献标志码:
A
摘要:
目的:通过动物实验和数学仿真研究H-FIRE参数与消融效果的对应关系。方法:采用兔子正常肝脏和原位肝脏肿瘤模型,进行一系列不同参数(电压850~2 250 V,脉宽对称2 μs,对称5 μs和不对称3-2-2-3 μs,剂量4 046.0~35 437.5 V2s)的肝脏及肿瘤消融治疗,计算消融面积,并采用HE染色法观察消融部位的病理变化,比较不同参数下不可逆电穿孔消融面积和效果的差异性;建立数学仿真模型,对比理论消融面积与实验消融面积之间的差异,建立消融参数与面积的曲线,采用t检验评估组间差异性。结果: 对于H-FIRE消融肝脏组织,场强分布对消融区域影响较大(P<0.05),在850~2 250V范围内,场强越大消融面积越大;脉宽方式对消融面积影响不明显(P>0.05),但对作用区域内消融的均匀性以及蛋白质变性程度影响较大,不对称脉宽消融效果更加均匀;不对称脉宽H-FIRE消融肿瘤结果类似,但受肿瘤组织的不均一性影响较大,肿瘤巢部位变性突出。结论:使用高频不可逆电穿孔技术消融组织和肿瘤,场强分布是确定消融区域大小的关键因素,脉宽方式影响消融区域均匀性和蛋白质变性程度。
Abstract:
Objective: To study the correspondence between H-FIRE parameters and ablation effect through animal experiments and mathematical simulation. Methods: Liver and tumors were performed with different parameters (voltage 850-2 250V, pulse width symmetry 2 μs, symmetrical 5 μs and asymmetric 3-2-2-3 μs, dose 4 046.0~35 437.5 V2s) ablation treatment using a series of rabbit normal liver and orthotopic liver tumor models. The ablation area was calculated, and the pathological changes of the ablation site were observed by HE staining to compare the differences in the ablation area and effect of irreversible electroporation under different parameters. The mathematical simulation model was established to compare the differences between theoretical ablation area and experimental ablation area, and the curve of ablation parameters and area was established, t-test was used to evaluate the difference between groups. Results: For H-FIRE ablation of liver tissue, the field strength distribution has a great influence on the ablation area (P<0.05). In the range of 850-2 250 V, the ablation area was the larger when the larger the field strength. The pulse width mode had no obvious effect on the ablation area (P>0.05), but the effect on ablation uniformity and protein denaturation in the active area was greater, and the effect of asymmetric pulse width ablation was more uniform. Results of asymmetric pulse width H-FIRE ablation tumor were similar. However, the denaturation of tumor nests was prominent due to the heterogeneity of tumor tissues. Conclusion: In the ablation of tissue and tumor by high frequency irreversible electroporation, the field intensity distribution is a key factor to determine the size of the ablation area, and the pulse width affects the uniformity of the ablation area and the degree of protein denaturation.

参考文献/References:


[1] Davalos R V, Mir I L, Rubinsky B. Tissue ablation with irreversible electroporation[J]. Ann Biomed Eng, 2005, 33(2):223
[2] Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation[J]. Technol Cancer Res Treat, 2005, 4(6):699
[3] Siddiqui I A, Kirks R C, Latouche E L, et al. High-frequency irreversible electroporation: safety and efficacy of next-generation irreversible electroporation adjacent to critical hepatic structures[J]. Surg Innov, 2017, 24(3):276
[4] Daniels C, Rubinsky B. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues[J]. J Biomech Eng, 2009, 131(7):071006
[5] Maor E, Ivorra A, Leor J, et al. The effect of irreversible electroporation on blood vessels[J]. Technol Cancer Res Treat, 2007, 6(4):307
[6] Li W, Fan Q, Ji Z, et al. The effects of irreversible electroporation (IRE) on nerves[J]. PloS One, 2011, 6(4):e18831
[7] Weiss M J, Wolfgang C L. Irreversible electroporation: a novel pancreatic cancer therapy[J]. Curr Probl Cancer, 2013, 37(5):262
[8] Narayanan G. Irreversible electroporation for treatment of liver cancer[J]. J Gastroenterol Hepatol, 2011, 7(5):313
[9] Kingham T P, Karkar A M, D’Angelica M I, et al. Ablation of perivascular hepatic malignant tumors with irreversible electroporation[J]. J Am Coll Surg, 2012, 215(3):379
[10] Fenner A. Prostate cancer: irreversible electroporation is a safe and feasible option for focal therapy[J]. Nat Rev Urol, 2014, 11(11): 600
[11] Sugimoto K, Moriyasu F, Takeuchi H, et al. Case study to assess the safety of irreversible electroporation near the heart[J]. Springer Plus, 2015, 4:74
[12] Deodhar A, Dickfeld T, Single G W, et al. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization[J]. Am J Roentgenol, 2011, 196(3):W330
[13] Arena C B, Sano M B, Rossmeisl J H Jr, et al. High-frequency irreversible electroporation(H-FIRE) for non-thermal ablation without muscle contraction[J]. Biomed Eng Online, 2011, 10:102
[14] Sano M B, Arena C B, DeWitt M R, et al. In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies[J]. Bioelectrochemistry, 2014, 100: 69
[15] Sano M B, Arena C B, Bittleman K R, et al. Bursts of bipolar microsecond pulses inhibit tumor growth [J]. Sci Rep, 2015, 5:14999
[16] Sano M B, Fan R E, Xing L. Asymmetric waveforms decrease lethal thresholds in high frequency irreversible electroporation therapies[J]. Sci Rep, 2017, 7:40747
[17] Zhao Y, Bhonsle S, Dong S, et al. Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning[J]. IEEE Trans Biomed Eng, 2018, 65(8):1810
[18] Sahakian A V, Al-Angari H M, Adeyanju O O. Electrode activation sequencing employing conductivity changes in irreversible electroporation tissue ablation[J]. IEEE Trans Biomed Eng, 2012, 59(3): 604
[19] Neal R E 2nd, Garcia P A, Robertson J L, et al. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning[J]. IEEE Trans Biomed Eng, 2012, 59(4):1076
[20] Davalos R V, Mir L M, Rubinsky B. Tissue ablation with irreversible electroporation[J]. Ann Biomed Eng, 2005, 33(2): 223
[21] Siddiqui I A, Latouche E L, DeWitt M R, et al. Induction of rapid, reproducible hepatic ablations using next-generation, high frequency irreversible electroporation (H-FIRE) in vivo[J]. HPB, 2016, 18(9):726
[22] Rolong A, Schmelz E M, Davalos R V. High-frequency irreversible electroporation targets resilient tumor-initiating cells in ovarian cancer[J]. Integr Biol, 2017, 9(12): 979

相似文献/References:

备注/Memo

备注/Memo:
基金项目 天津市科技计划项目(19ZXYXSY00050)
作者简介 刘玉堂(1994-),男,硕士在读,研究方向:生物医学工程(工学);
通信作者:薛志孝,E-mail:xuezhixiao@126.com。
更新日期/Last Update: 2020-06-02