|本期目录/Table of Contents|

[1]郭朝阳,朱艳鹏,吴丽婷,等.一步法制备携载治疗剂的树枝状大孔二氧化硅纳米粒子[J].天津医科大学学报,2019,25(03):220-224.
 GUO Zhao-yang,ZHU Yan-peng,WU Li-ting,et al.One-step synthesis of therapeutic agent loaded dendritic large-pore mesoporous silica nanoparticles[J].Journal of Tianjin Medical University,2019,25(03):220-224.
点击复制

一步法制备携载治疗剂的树枝状大孔二氧化硅纳米粒子(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
25卷
期数:
2019年03期
页码:
220-224
栏目:
基础医学
出版日期:
2019-05-20

文章信息/Info

Title:
One-step synthesis of therapeutic agent loaded dendritic large-pore mesoporous silica nanoparticles
文章编号:
1006-8147(2019)03-0220-05
作者:
郭朝阳朱艳鹏吴丽婷陈 研杨晓英
(天津医科大学药学院药物化学教研室,天津市临床药物关键技术重点实验室,天津300070)
Author(s):
GUO Zhao-yang ZHU Yan-peng WU Li-ting CHEN Yan YANG Xiao-ying
(Department of Medicinal chemistry, School of Pharmacy, Tianjin Medical University,Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics(Theranostics), Tianjin 300070, China)
关键词:
大孔二氧化硅纳米粒子双模板法肿瘤治疗
Keywords:
large-pore mesoporous silica nanoparticles dual-templating method tumor therapy
分类号:
O63
DOI:
-
文献标志码:
A
摘要:
目的:通过双模板策略一步法制备携载治疗剂的树枝状大孔二氧化硅纳米粒子(DLMSNs)。方法:以十六烷基三甲基溴化铵(CTAB)为模板剂,以治疗剂二茂铁甲酸(FCA)或血卟啉二盐酸盐(HP)为辅助模板剂,制备了DLMSNs。通过透射电子显微镜(TEM)、激光粒度仪和红外光谱(FT-IR)表征了DLMSNs的形貌、粒径、红外吸收特征等。结果:所得DLMSNs具有中心径向结构,粒径小于100 nm,单分散性好。通过调整CTAB与辅助模板的比例,可以很好地控制DLMSNs的孔径和粒径。通过选择合适的方法除掉CTAB后,辅助模板剂仍有一定量保留在DLMSNs中,并进一步发挥抗肿瘤的治疗作用。结论:该方法不仅避免了以前报道的有毒辅助模板剂的使用,而且仅以水为反应溶剂,避免了使用有毒的有机溶剂。将为DLMSNs的制备提供一种简单可行的方法。
Abstract:
Objective: To prepare one-step synthesis of therapeutic agent loaded dendritic large-pore mesoporous silica nanoparticles (DLMSNs) via dual-templating strategy. Methods: DLMSNs were prepared by using cetyltrimethylammonium bromide (CTAB) as templates and therapeutic agents as auxiliary templates in this study. The morphology, particle size and infrared absorption of DLMSNs were characterized by transmission electron microscopy (TEM), laser particle size analyzer and Fourier transform infrared spectra (FT-IR). Results: The obtained DLMSNs showed a central-radial structure with the size below 100 nm and excellent monodispersity. The pore size and partical size of DLMSNs were well controlled by adjusting the ratio of CTAB to auxiliary templates. Importantly, the auxiliary templates remained in DLMSNs after removing CTAB by choosing the appropriate treatment, indicating a therapeutic effect in tumor therapy. Conclusion: This method not only avoids using the toxic auxiliary templates reported previously, but also averts the toxic organic solvent by only using aqueous solution as reaction condition. The study will provide a simple and feasible way to prepare the DLMSNs for biomedical application.

参考文献/References:

[1] Viveroescoto J L, Slowing I I, Trewyn B G, et al. Mesoporous silica Nanoparticles for intracellular controlled drug delivery[J]. Small, 2010, 6(18):1952
[2] Wu S H, Hung Y, Mou C Y. Mesoporous silica nanoparticles as nanocarriers[J]. Chem Commun, 2011, 47(36): 9972
[3] Du X, He J. Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications[J]. Nanoscale,2011,3(10):3984
[4] Du X, Qiao S Z. Dendritic silica particles with center-radial pore channels:promising platforms for catalysis and biomedical applications[J]. Small, 2015, 11(4):392
[5] Shen D, Yang J, Li X,et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Lett, 2014, 14(2):923
[6] Singh R, Bapat R, Qin L, et al. Atomic layer deposited(ALD) TiO2 on fibrous nano-silica(KCC-1) for photocatalysis: nanoparticle formation and size quantization effect[J]. ACS Catal, 2016, 6(5):2770
[7] Polshettiwar V, Cha D, Zhang X X, et al. High-surface-area silica nanospheres(KCC-1) with a fibrous morphology[J]. Angew Chem Int Edit, 2010, 49(50): 9652
[8] Du X, Shi B, Tang Y, et al. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery[J]. Biomaterials, 2014, 35(21): 5580
[9] Tao C, Zhu Y, Xu Y, et al. Mesoporous silica nanoparticles for enhancing the delivery efficiency of immunostimulatory DNA drugs[J]. Dalton T, 2014, 43(13): 5142
[10] Zhang Y, Zhi Z, Jiang T, et al. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan[J]. J Control Release, 2010, 145(3): 257
[11] Yu K, Zhang X, Tong H, et al. Synthesis of fibrous monodisperse core-shell Fe3O4/SiO2/KCC-1[J]. Mater Lett, 2013, 106(9):151
[12] Nandiyanto A B D. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters[J]. Micropor Mesopor Mat, 2009, 120(3): 447
[13] Yue Q, Li J, Luo W, et al. An interface coassembly in biliquid phase: toward core-shell magnetic mesoporous silica microspheres with tunable pore size[J]. J Am Chem Soc, 2015, 137(41):13282
[14] Shen D K, Chen L, Yang J P, et al. Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: toward active and stable heterogeneous catalysts[J]. ACS Appl Mater Inter, 2015, 7(31):17450
[15] Yang J, Shen D, Wei Y, et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels[J]. Nano Res, 2015, 8(8): 2503
[16] Zhang K, Xu L, Jiang J, et al. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure[J]. J Am Chem Soc, 2013, 135(7): 2427
[17] Yang Y, Bernardi S, Song H, et al. Anion assisted synthesis of large pore dendritic hollow mesoporous organosilica nanoparticles: understanding the composition gradient[J]. Chem Mater, 2016, 28(3): 704
[18] Niedermayer S, Weiss V, Herrmann A, et al. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery[J]. Nanoscale, 2015, 7(17): 7953
[19] Pan L, He Q, Liu J, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles[J]. J Am Chem Soc, 2012, 134(13): 5722
[20] Huang C, Chu C, Wang X, et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy[J]. Biomater Sci, 2017, 5(8): 1512
[21] Tian J, Chen J, Ge C, et al. Synthesis of PEGylated ferrocene nanoconjugates as the radiosensitizer of cancer cells[J]. Bioconjug Chem, 2016, 27(6):1518
[22] Wang P, Tang H, Zhang P. Highly efficient and biocompatible nanoparticle-based photosensitizer for treatment of acne vulgaris[J]. Nanomedicine, 2018, 13(20): 26

相似文献/References:

备注/Memo

备注/Memo:
基金项目 天津市自然科学基金资助项目(17JCQNJC14100);中国博士后科学基金资助项目(2016M590208)
作者简介 郭朝阳(1993-),女,硕士在读,研究方向:药剂学;通信作者:杨晓英,E-mail: yangxiaoying@tmu.edu.cn。
更新日期/Last Update: 2019-07-03