[1] Viveroescoto J L, Slowing I I, Trewyn B G, et al. Mesoporous silica Nanoparticles for intracellular controlled drug delivery[J]. Small, 2010, 6(18):1952
[2] Wu S H, Hung Y, Mou C Y. Mesoporous silica nanoparticles as nanocarriers[J]. Chem Commun, 2011, 47(36): 9972
[3] Du X, He J. Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications[J]. Nanoscale,2011,3(10):3984
[4] Du X, Qiao S Z. Dendritic silica particles with center-radial pore channels:promising platforms for catalysis and biomedical applications[J]. Small, 2015, 11(4):392
[5] Shen D, Yang J, Li X,et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Lett, 2014, 14(2):923
[6] Singh R, Bapat R, Qin L, et al. Atomic layer deposited(ALD) TiO2 on fibrous nano-silica(KCC-1) for photocatalysis: nanoparticle formation and size quantization effect[J]. ACS Catal, 2016, 6(5):2770
[7] Polshettiwar V, Cha D, Zhang X X, et al. High-surface-area silica nanospheres(KCC-1) with a fibrous morphology[J]. Angew Chem Int Edit, 2010, 49(50): 9652
[8] Du X, Shi B, Tang Y, et al. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery[J]. Biomaterials, 2014, 35(21): 5580
[9] Tao C, Zhu Y, Xu Y, et al. Mesoporous silica nanoparticles for enhancing the delivery efficiency of immunostimulatory DNA drugs[J]. Dalton T, 2014, 43(13): 5142
[10] Zhang Y, Zhi Z, Jiang T, et al. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan[J]. J Control Release, 2010, 145(3): 257
[11] Yu K, Zhang X, Tong H, et al. Synthesis of fibrous monodisperse core-shell Fe3O4/SiO2/KCC-1[J]. Mater Lett, 2013, 106(9):151
[12] Nandiyanto A B D. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters[J]. Micropor Mesopor Mat, 2009, 120(3): 447
[13] Yue Q, Li J, Luo W, et al. An interface coassembly in biliquid phase: toward core-shell magnetic mesoporous silica microspheres with tunable pore size[J]. J Am Chem Soc, 2015, 137(41):13282
[14] Shen D K, Chen L, Yang J P, et al. Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: toward active and stable heterogeneous catalysts[J]. ACS Appl Mater Inter, 2015, 7(31):17450
[15] Yang J, Shen D, Wei Y, et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels[J]. Nano Res, 2015, 8(8): 2503
[16] Zhang K, Xu L, Jiang J, et al. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure[J]. J Am Chem Soc, 2013, 135(7): 2427
[17] Yang Y, Bernardi S, Song H, et al. Anion assisted synthesis of large pore dendritic hollow mesoporous organosilica nanoparticles: understanding the composition gradient[J]. Chem Mater, 2016, 28(3): 704
[18] Niedermayer S, Weiss V, Herrmann A, et al. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery[J]. Nanoscale, 2015, 7(17): 7953
[19] Pan L, He Q, Liu J, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles[J]. J Am Chem Soc, 2012, 134(13): 5722
[20] Huang C, Chu C, Wang X, et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy[J]. Biomater Sci, 2017, 5(8): 1512
[21] Tian J, Chen J, Ge C, et al. Synthesis of PEGylated ferrocene nanoconjugates as the radiosensitizer of cancer cells[J]. Bioconjug Chem, 2016, 27(6):1518
[22] Wang P, Tang H, Zhang P. Highly efficient and biocompatible nanoparticle-based photosensitizer for treatment of acne vulgaris[J]. Nanomedicine, 2018, 13(20): 26