[1] 郑钧正.从基因组学到放射组学的启示[J].医学研究杂志,2016, 45(2):1
[2] 苏会芳,周国锋,谢传淼,等.放射组学的兴起和研究进展[J].中华医学杂志, 2015, 95(7):553
[3] Liang C S, Huang Y Q, He L, et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer[J].Oncotarget,2016, 7(21):31401
[4] Larue R T H M, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures[J]. Br J Radiol, 2017, 90(1070): 20160665
[5] Paul D, Su R, RomainM, et al. Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier[J].Comput Med Imaging Graph,2017,60(9):42
[6] Gutenko I, Dmitriev K, Kaufman A E, et al. AnaFe:visual analytics of image derived temporal features focusing on the spleen[J].IEEE Trans Vis Comput Graph,2017,23(1):171
[7] Liu Y, Kim J, Balagurunathan Y, et al.Radiomic features are associated with EGFR mutation status in lung adenocarcinomas[J].Clin Lung Cancer,2016,17(5):441
[8] Zhou M, Chaudhury B, Hall L O, et al. Identifying spatial imaging biomarkers of glioblastomamultiforme for survival group prediction[J]. J Magn Reson Imaging, 2016,46(1):115
[9] Gillies R J, Kinahan P E, Hricak H. Radiomics: images are more than pictures, they are data[J].Radiology,2016,278(2):563
[10] Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans[J]. J Thorac Oncol, 2016, 11(12):2120
[11] Shen C, Liu Z, Guan M, et al. 2D and 3D CT radiomicsfeatures prognostic performance comparison in non-small cell lung cancer[J]. Transl Oncol, 2017, 10(6):886
[12] 3Rd A S, Mclennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Med Phys, 2012, 38(2):915
[13] Clark K, Vendt B, Smith K, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository[J]. J Digital Imaging, 2013, 26(6):1045
[1]庞学明,郭军,王笑一,等.改进的随机游走算法在困难肺结节分割中的应用[J].天津医科大学学报,2014,20(01):32.
PANG Xue-ming,GUO Jun,WANG Xiao-yi,et al.Application of improved random walker algorithm in segmentation of pulmonary nodules [J].Journal of Tianjin Medical University,2014,20(06):32.