|本期目录/Table of Contents|

[1]朱 丹,王 伟,付东山.小波分解结合自适应神经模糊推理系统的呼吸预测研究[J].天津医科大学学报,2018,24(06):474-479488.
 ZHU Dan,WANG Wei,FU Dong-shan.Respiration prediction by wavelet decomposition and adaptive neuro fuzzy inference system[J].Journal of Tianjin Medical University,2018,24(06):474-479488.
点击复制

小波分解结合自适应神经模糊推理系统的呼吸预测研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年06期
页码:
474-479488
栏目:
基础医学
出版日期:
2018-11-20

文章信息/Info

Title:
Respiration prediction by wavelet decomposition and adaptive neuro fuzzy inference system
作者:
朱 丹王 伟付东山
(天津医科大学肿瘤医院放疗科,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津300060)
Author(s):
ZHU Dan WANG Wei FU Dong-shan
(Department of Radiation Oncology, Cancer Institute and Hospital, Tianjin Medical University, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China)
关键词:
呼吸预测小波分解自适应神经模糊推理系统神经网络呼吸同步追踪系统射波刀
Keywords:
respiration predictionwavelet decomposition adaptive neuro fuzzy inference system neural networks Synchrony CyberKnife
分类号:
R815.2
DOI:
-
文献标志码:
A
摘要:
目的:研究一种方法精确预测胸腹部肿瘤放射治疗中的非规则呼吸运动。方法:提出基于小波分解和自适应神经模糊推理系统的呼吸运动预测方法(WANFIS),利用小波分解将呼吸信号分成基线、低频和高频三部分,并分别采用线性拟合、自适应神经模糊推理系统(ANFIS)、简单移动平均进行预测,然后综合三部分预测值作为呼吸运动预测结果。基于30例临床数据回顾性分析,将WANFIS算法与神经网络(NN)、CyberKnife放射外科系统的Synchrony呼吸同步追踪系统、ANFIS这三种典型预测算法进行对照比较。结果:本文提出的WANFIS算法的归一化均方根误差(nRMSE)平均值为0.09,小于NN的0.17、Synchrony的0.11 以及ANFIS的0.11。结论:WANFIS能更好地预测非规则呼吸信号,更有效地补偿放疗系统时间延迟。
Abstract:
Objective: To develop a method to precisely predict irregular respiratory motion in radiotherapy for thoracic and abdominal tumors. Methods: A prediction algorithm based on wavelet decomposition and adaptive neuro fuzzy inference system (WANFIS) was proposed. The respiratory signal was first decomposed into baseline, low frequency and high frequency components, which were then predicted respectively using linear fitting, adaptive neuro fuzzy inference system (ANFIS) and simple moving average. The three parts of predicted values were finally combined to form the respiration prediction result. The WANFIS was compared with three typical prediction algorithms including neural network (NN), Synchrony Respiratory Tracking System of the CyberKnife Robotic Radiosurgery System and ANFIS by retrospective analysis of clinical data of 30 cases. Results: The normalized root mean square error (nRMSE) of WANFIS averaged 0.09, which was less than 0.17 for NN, 0.11 for Synchrony and 0.11 for ANFIS. Conclusion: The WANFIS algorithm proposed in this paper may more precisely predict irregular respiratory motion and thus more effectively compensate the time delay of the system.

参考文献/References:


[1] Murphy M J,Dieterich S. Comparative performance of linear and nonlinear neural networks to predict irregular breathing[J]. Phys Med Biol, 2006,51(22):5903
[2] Bukovsky I,Homma N,Ichiji K,et al. A fast neural network approach to predict lung tumor motion during respiration for radiation therapy applications[J]. Biomed Res Int,2015, 2015:489679
[3] Teo P T,Bruce N,Pistorius S. Application and parametric studies of a sliding window neural network for respiratory motion predictions of lung cancer patients[C]//Jaffray D A,World Congress on Medical Physics and Biomedical Engineering: IFMBE Proceedings 51,Switzerland: Springer,2015:595
[4] Sun W Z,Jiang M Y,Ren L,et al. Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network[J]. Phys Med Biol,2017,62(17):6822
[5] Sheng Y,Li S T,Sayeh S,et al. Fuzzy and hybrid prediction of position signal in synchrony?誖; respiratory tracking system[C]//de Figueiredo R J P. Proceedings of the 9th IASTED International Conference on Signal and Image Processing. Anaheim: ACTA Press,2007:459
[6] Kakar M,Nystrom H,Aarup L R,et al. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)[J]. Phys Med Biol,2005,50(19):4721
[7] 史少华,张辉,樊文刚,等. 基于分离有限状态模型的呼吸预测算法[J]. 清华大学学报(自然科学版),2015(3):257
[8] Balasubramanian A,Shamsuddin R,Prabhakaran B,et al. Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts.[J]. Phys Med Biol,2017,62(5):1791
[9] Cavedon C,Francescon P,Cora S,et al. Performance of a motion tracking system during Cyberknife robotic radiosurgery[C]//McDaniel F D,Doyle B L. 20th International Conference on Application of Accelerators in Research and Industry:AIP Conference Processings. New York: AIP,2009,1099(1): 464
[10] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans Pattern Anal Mach Intell,1989,11(7):674
[11] 曾宪伟,赵卫明,盛菊琴. 小波包分解树结点与信号子空间频带的对应关系及其应用[J]. 地震学报,2008,30(1):90
[12] 李楠,周波. 信号处理中各种频率以及小波尺度的关系[J]. 电气电子教学学报,2008,30(6):15
[13] 孔超,方勇华,兰天鸽,等. 小波变换中基于正交多项式拟合的边界延拓[J]. 量子电子学报,2008,25(1):25
[14] Jang J R. ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE Trans Syst Man Cybern,1993,23(3):665

相似文献/References:

备注/Memo

备注/Memo:
基金项目 国家科技支撑计划课题(2012BAI15B01);国家重点研发计划(2017YFC0113100)
作者简介 朱丹(1993-),女,硕士在读,研究方向:医学信号处理;通信作者:付东山,E-mail:dongshan_fu@hotmail.com。
更新日期/Last Update: 2018-11-30