|本期目录/Table of Contents|

[1]钱宇晗,张艳秋,霍 然,等.HIFU经颅脑肿瘤治疗参数筛选的数值仿真研究001[J].天津医科大学学报,2018,24(05):369-375.
 QIAN Yu-han,ZHANG Yan-qiu,HUO Ran,et al.Study on parameters screening for the numerical simulation of transcranial tumor treatment with high intensity focused ultrasound[J].Journal of Tianjin Medical University,2018,24(05):369-375.
点击复制

HIFU经颅脑肿瘤治疗参数筛选的数值仿真研究001(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年05期
页码:
369-375
栏目:
基础医学
出版日期:
2018-09-20

文章信息/Info

Title:
Study on parameters screening for the numerical simulation of transcranial tumor treatment with high intensity focused ultrasound
作者:
钱宇晗张艳秋霍 然菅喜岐
天津医科大学生物医学工程与技术学院,天津 300070
Author(s):
QIAN Yu-hanZHANG Yan-qiuHUO RanJIAN Xi-qi
School of Biomedical Engineeringand Technology, Tianjin Medical University, Tianjin 300070, China
关键词:
高强度聚焦超声机械指数辐照参数可治疗焦域
Keywords:
HIFU mechanical index irradiation parameters treatment focal region
分类号:
R454.3
DOI:
-
文献标志码:
A
摘要:
目的:筛选相控换能器不同输入总功率和工作频率条件下高强度聚焦超声(HIFU)经颅脑肿瘤安全治疗参数。方法:以志愿者的头颅电子计算机断层扫描(CT)图像数据和82阵元相控换能器建立HIFU经颅治疗的数值仿真模型,以43 ℃下连续辐照时间大于90 min的热剂量、机械指数阈值1.9作为是否形成热损伤和空化损伤的条件,数值仿真研究不同输入总功率和频率时形成的温度场分布,筛选避免颅骨和正常脑组织损伤的HIFU治疗参数及其形成焦域大小。结果:当HIFU辐照的输入总功率较低时,HIFU经颅形成焦域达到治疗温度所需时间较长,且随着频率的升高在设定目标焦点与换能器之间的组织受到热损伤的可能性增大;当HIFU辐照的输入总功率过高时,HIFU经颅形成焦域达到治疗温度所需时间缩短,且随着频率的升高在焦域与换能器之间的焦域区域外的组织可能出现空化损伤。不同频率下避免正常组织伤害的输入总功率的范围为:①0.5 MHz时输入总功率为20.6~61.8 W;②0.6 MHz时输入总功率为41.2~82.4 W;③0.7 MHz时输入总功率为41.2~61.8 W;④0.8 MHz时输入总功率为41.2~61.8 W;⑤0.9 MHz时无可治疗的输入总功率;⑥1.0 MHz时输入总功率为61.8 W。结论:为了避免颅骨和正常脑组织的热损伤和空化损伤,HIFU经颅治疗脑部疾病时,需要筛选相控换能器工作频率下换能器的输入总功率范围。
Abstract:
Objective: To screen for safe treatment parameters of HIFU (high intensity focused ultrasound) for transcranial brain tumor under different input total power and working frequency with phase-controlled transducer. Methods: The numerical simulation model of HIFU transcranial treatment was set up using volunteer CT (computed tomography) image data and 82-element phase-controlled transducer. The thermal dose of continuous irradiation at 43 ℃ for more than 90 min and the mechanical index of 1.9 as the conditions of thermal injury and the cavitation damage and the temperature field distributions under different input total power and frequenc were numerically simulated, and the treatment parameters of HIFU to avoid the damage of skull and normal brain tissue were screened and the size of focal field was formed. Results: When the total input power of HIFU irradiation was low, it could only be focused by low-frequency ultrasound and the time required for the focal area to reach the treatment temperature was longer, which might affect the skull and the normal brain tissue between the focal point set position and the ultrasound transducer, thus forming a thermal damage; When the total input power of HIFU irradiation was high, it could only be focused by low-frequency ultrasound and the time required for the focal region to reach the therapeutic temperature was short, which might cause cavitation damage to the skull and normal brain tissue outside the focal region; The ranges of total input power for avoiding normal tissue injury at different frequencies were: ① the total input power was 20.6-61.8 W at 0.5 MHz; ② the total input power was 41.2-82.4 W at 0.6 MHz; ③ the total input power was 41.2-61.8 W at 0.7 MHz; ④ the total input power was 41.2-61.8 W at 0.8 MHz; ⑤ no total input power was acquired at 0.9 MHz; ⑥ the total input power was 61.8 W at 1.0 MHz . Conclusion: To avoid thermal and cavitation damage in the skull and normal brain tissue, HIFU transcranial treatment for brain disease requires screening of the total input power range of the transducer at different operation frequencies.

参考文献/References:


[1] Magara A,Bühler R,Moser D,et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease[J]. J Ther Ultrasound,2014,2(1):1
[2] 谢孟桥,邹建中. 磁共振引导下经颅聚焦超声治疗的研究进展[J]. 中国介入影像与治疗学,2014,11(11): 748
[3] Jeanmonod D,Werner B,Morel A, et al. Transcranialmagnetic resonance imaging-guided focused ultrasound: noninvasive central lateralthalamotomy for chronic neuropathic pain[J]. Neurosurgical Focus, 2012,32(1): E1
[4] Westervelt P J. Parametric acoustic array[J]. J Acoust Soc Am,1963,35(4): 535
[5] Lee K I,Sim I,Kang GS,et al. Numerical simulation of temperature elevation in soft tissue by high intensity focused ultrasound[J]. Modern Physics Letters B,2008,22(11): 803
[6] Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm [J]. J Appl Physiol,1998,85(1):5
[7] Hallaj I M,Cleveland R O. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound[J]. J Acoust Soc Am,1999,105(5): 7
[8] Apfel R E,Holland C K. Gauging the likelihood of cavitation from short-pulse,low-duty cycle diagnostic ultrasound[J]. Ultrasound Med Biol,1991,17 (2): 179
[9] Sapareto S A,Dewey W C. Thermal dose determination in cancer therapy[J]. Int J Radiat Oncol Biol Phys,1984,10(6):787
[10] Aubry J F,Tanter M,Pernot M,et al. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans[J]. J Acoust Soc Am,2003,113(1): 84
[11] Narumi R,Matsuki K,Mitarai S,et al. Focus control aided by numerical simulation in heterogeneous media for high-intensity focused ultrasound treatment[J]. Jpn J Appl Phys,2013,52(7): 1044
[12] Pernot M,Aubry J F,Tanter M,et al. Prediction of the skull overheating during high intensity focused ultrasound transcranial brain therapy[C]. Ultrasonics Symposium. IEEE,2004,2:1005
[13] Tufail Y,Matyushov A,Baldwin N,et al. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits[J]. Neuron,2010,66(5):681
[14] Vykhodtseva N I,Hynynen K,Damianou C. Pulse duration and peak intensity during focused ultrasound surgery: Theoretical and experimental effects in rabbit brain in vivo[J]. Ultrasound Med Biol,1994,20(9): 987
[15] Clement G T,Hynynen K. A non-invasive method for focusing ultrasound through the human skull[J]. Phys Med Biol,2002,47(8): 1219
[16] McDannold N,Clement G T,Black P,et al. Transcranial MRI-guided focused ultrasound surgery of brain tumors: Initial findings in three patients[J]. Neurosurgery,2010,66(2): 323
[17] Pinton G, Aubry J F, Fink M, et al. Effects of nonlinear ultrasound propagation on high intensity brain therapy[J]. Medical Physics, 2011, 38(3):1207

相似文献/References:

[1]薛凡凡,常诗卉,菅喜岐.血管对高强度聚焦超声焦域影响的体模实验研究[J].天津医科大学学报,2014,20(04):275.
 XUE Fan-fan,CHANG Shi-hui,JIAN Xi-qi.Experimental study on the effect of blood vessel on high intensity focused ultrasound focal region in phantom[J].Journal of Tianjin Medical University,2014,20(05):275.
[2]曾苗苗,钱宇晗,常诗卉,等.骨骼对于高强度聚焦超声聚焦影响的实验研究[J].天津医科大学学报,2016,22(04):291.
 ZENG Miao-miao,QIAN Yu-han,CHANG Shi-hui,et al.Research on the influence of bone on high intensity focused ultrasound focusing[J].Journal of Tianjin Medical University,2016,22(05):291.

备注/Memo

备注/Memo:
作者简介 侯振宇(1993-),男,硕士在读,研究方向:肝胆肿瘤;通信作者:张倜,E-mail: zhangti@tjmuch.com;宋天强,E-mail:tjchi@hotmail.com。
更新日期/Last Update: 2018-09-30