|本期目录/Table of Contents|

[1]李 伟,王兆松,董秋萍,等.肺鳞癌中miR-144靶基因预测及其生物信息学分析[J].天津医科大学学报,2018,24(04):287-290.
 LI Wei,WANG Zhao-song,DONG Qiu-ping,et al.Bioinformatic analysis and prediction of miR-144 target genes in lung squamous cell carcinoma[J].Journal of Tianjin Medical University,2018,24(04):287-290.
点击复制

肺鳞癌中miR-144靶基因预测及其生物信息学分析(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年04期
页码:
287-290
栏目:
出版日期:
2018-07-20

文章信息/Info

Title:
Bioinformatic analysis and prediction of miR-144 target genes in lung squamous cell carcinoma
作者:
李 伟王兆松董秋萍徐 玥陈永孜许世磊
天津医科大学肿瘤医院,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市恶性肿瘤临床医学研究中心,天津300060
Author(s):
LI Wei WANG Zhao-song DONG Qiu-ping XU Yue CHEN Yong-zi XU Shi-lei
Cancer Institute and Hospital, Tianjin Medical University, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
关键词:
miR-144肺鳞状细胞癌生物信息学基因本体论
Keywords:
miR-144 lung squamous cell carcinoma bioinformatics gene ontology
分类号:
R73
DOI:
-
文献标志码:
摘要:
目的:分析miR-144靶基因在肺鳞癌中参与的信号通路生物过程。方法:分析The Cancer Genome Atlas网站中肺鳞癌患者的miR-144的表达量及生存曲线;预测miR-144靶基因并通过表达数据筛选影响肺鳞癌进展基因;BinGo软件对候选靶基因进行GO注释分析,利用DAVID网站预测其信号通路。结果: miR-144表达量高有利于延长肺鳞癌患者生存时间。综合4个靶基因数据库发现miR-144有72个预测结果,其中45个在肺鳞癌患者癌与癌旁组织间表达存在差异。其中部分候选靶基因参与胞核及星形微管的组成,参与上皮细胞增生、RNA合成。通路分析显示部分候选靶基因参与Ras、Wnt、Hippo等信号通路。结论:45个miR-144候选靶基因通过多条信号通路及生物过程调节细胞生命活动,影响肿瘤患者生存预期。
Abstract:
Objective: To analyze the target genes of miR-144 in lung squamous cell carcinoma and their biological processes and signaling pathways. Methods:The relationship between miRNA expression and survival plot of patients with lung squamous cell carcinoma in TCGA was analyzed.And then the target gene of miR-144 was predicted by target gene databases. The gene ontology(GO) enrichment was performed by BinGo. DAVID database was used to predict the target gene signal pathway. Results:The high expression of miR-144 was beneficial to prolong the overall survival of patients with lung squamous cell carcinoma. Seventy-two target genes of miR-144 were obtained by 4 miRNA database and 45 of 72 target genes were significantly different in cancer and normal tissue. GO enrichment analysis found that genes constituted the nucleus and astral microtubule mainly. And they took part in endothelial cell proliferation and RNA. Ras, Wnt and Hippo signal pathway were affected by the target genes. Conclusion: Forty-five miR-144 target genes may affect cell life activities and regulate tumor development by multiple signaling pathways.

参考文献/References:


[1] Herbst R S, Heymach J V, Lippman S M. Lung cancer[J]. N Engl J Med, 2008, 359(13): 1367
[2] Romanidou O, Imbimbo M, Mountzios G, et al. Therapies in the pipeline for small-cell lung cancer [J]. Br Med Bull, 2016, 119(1): 37
[3] Chen S, Li P, Li J, et al. MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR [J]. Cell Physiol Biochem, 2015, 35(3): 997
[4] Liu M, Gao J, Huang Q, et al. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression [J]. Oncol Lett, 2016, 11(6): 3772
[5] Monroig Pdel C, Chen L, Zhang S, et al. Small molecule compounds targeting miRNAs for cancer therapy [J]. Adv Drug Deliv Rev, 2015, 81: 104
[6] Sethi S, Ali S, Sethi S, et al. MicroRNAs in personalized cancer therapy [J]. Clin Genet, 2014, 86(1): 68
[7] Tutar L, Tutar E, Ozgur A, et al. Therapeutic Targeting of microRNAs in Cancer: Future Perspectives [J]. Drug Dev Res, 2015, 76(7): 382
[8] Gao F, Wang T, Zhang Z, et al. Regulation of activating protein-4-associated metastases of non-small cell lung cancer cells by miR-144 [J]. Tumour Biol, 2015,37(12): 15535
[9] Mirzaei H, Masoudifar A, Sahebkar A, et al. MicroRNA: A Novel Target of Curcumin in Cancer Therapy[J]. J Cell Physiol, 2017, 233(4): 3004
[10] Gross N, Kropp J. MicroRNA Signaling in Embryo Development [J]. 2017, 6(3): 34
[11] Bai B, Shi B, Hou N, et al. MicroRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination [J]. BMC Plant Biol, 2017, 17(1): 150
[12] Kane N M, Thrasher A J, Angelini G D, et al. Concise review: MicroRNAs as modulators of stem cells and angiogenesis[J]. Stem Cells, 2014, 32(5): 1059
[13] Li J, Sun P, Yue Z, et al. MiR-144-3p Induces Cell Cycle Arrest and Apoptosis in Pancreatic Cancer Cells by Targeting Proline-Rich Protein 11 Expression via the Mitogen-Activated Protein Kinase Signaling Pathway [J]. DNA Cell Biol, 2017, 36(8): 619
[14] Zhang J J, Chen J T, Hua L, et al. MiR-98 inhibits hepatocellular carcinoma cell proliferation via targeting EZH2 and suppressing Wnt/beta-catenin signaling pathway [J]. Biomed Pharmacother, 2017, 85: 472
[15] Liu S, Luan J, Ding Y. MiR-144-3p Targets FosB Protooncogene, AP-1 Transcription Factor Subunit (FOSB) to Suppress Proliferation, Migration, and Invasion of PANC-1 Pancreatic Cancer Cells [J]. Oncol Res, 2017, 26(5):683
[16] Yan J, Xu Y, Wang H, et al. MicroRNA-503 inhibits the proliferation and invasion of breast cancer cells via targeting insulin-like growth factor 1 receptor [J]. Mol Med Rep, 2017, 16(2): 1707

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-07-20