|本期目录/Table of Contents|

[1]李煜,晋文燕,李红莲,等.基于虚拟筛选的3D QSAR药效团设计CDC25B抑制剂[J].天津医科大学学报,2018,24(02):131-134.
 LI-Yu,JIN Wen-yan,LI Hong-lian,et al.3D QSAR pharmacophore based on virtual screening for design of CDC25B inhibitors[J].Journal of Tianjin Medical University,2018,24(02):131-134.
点击复制

基于虚拟筛选的3D QSAR药效团设计CDC25B抑制剂(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年02期
页码:
131-134
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
3D QSAR pharmacophore based on virtual screening for design of CDC25B inhibitors
作者:
李煜晋文燕李红莲王润玲马英
天津医科大学药学院,天津市临床药物关键技术重点实验室,天津300070
Author(s):
LI-Yu JIN Wen-yan LI Hong-lian WANG Run-lingMA-Ying
School of Pharmacy, Tianjin Medical University, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Tianjin 300070, China
关键词:
CDC25B Hypogen分子对接
Keywords:
cell division cycle25B Hypogen docking
分类号:
R914.2
DOI:
-
文献标志码:
A
摘要:
目的:用计算机辅助药物设计的方法发现潜在的CDC25B抑制剂。方法:用Hypogen方法研究CDC25B抑制剂。cost分析、测试集预测和Fisher检验用来验证该模型的可靠性。随后,运用hypo-1-CDC25B对ZINC数据库进行筛选,得到符合成药五规则的26个化合物,26个化合物进行分子对接得到6个对接得分高的化合物。结果:通过分子对接研究,发现6个化合物有较好的亲和力。结论:发现6个潜在的CDC25B抑制剂,这有助于发现治疗癌症的强有力的先导化合物。
Abstract:
Objective: To explore potential the cell division cycle 25B(CDC25B) inhibitors by the method of computer-aided drug design. Methods: In this study, 3D QSAR pharmacophore models for CDC25B inhibitors were developed by the module of Hypogen. Three methods (cost analysis, test set prediction, and Fisher’s test)were applied to validate whether the models could be used to predict the biological activities of compounds. Subsequently, 26 compounds meeting Lipinski’s rules of five were obtained by the virtual screening of the Hypo-1-CDC25B against ZINC databases. Results: It was discovered that six identified molecules had satisfying binding affinity. Conclusion: Thus, this study would be helpful to discover potent lead compounds for the treatment for cancers.

参考文献/References:

[1] 蔡玥,孟群,王才有,等.2015-2020年我国居民预期寿命测算及影响因素分析[J].中国卫生统计,2016,33(8):2
[2] Sasaki H, Yukiue H, Kobayashi Y, et al. Expression of the cdc25B gene as a prognosis marker in non-small cell lung cancer[J]. Cancer letters, 2001, 173(2):187
[3] Garg D, Gandhi T, Mohan C G. Exploring QSTR and toxicophore of hERG K+ channel blockers using GFA and HypoGen techniques [J]. J Mol Graph Mode, 2008, 26(6):966
[4] Kumar R, Son M, Bavi R, et al. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling [J]. Acta Pharmacol Sin, 2015, 36(8):998
[5] Gangwal R P, Das N R, Thanki K, et al. Identification of p38 alpha MAP kinase inhibitors by pharmacophore based virtual screening[J]. J Mol Graph Mode, 2014, 49:18
[6] Ma Y, Jin Y Y, Wang Y L, et al. The discovery of a novel and selective inhibitor of PTP1B over TCPTP: 3D QSAR pharmacophore modeling, virtual screening, synthesis, and biological evaluation[J]. Chem Drug Design, 2014, 83(6):697
[7] Spassov V Z, Yan L, Flook P K. The dominant role of side-chain backbone interactions in structural realization of amino acid code.ChiRotor: A side-chain prediction algorithm based on side-chain backbone interactions[J]. Protein Sci, 2007, 16, (3): 494
[8] Martin K R, Narang P, Medina-Franco J L, et al. Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery[J]. Methods, 2014, 65 (2):219
[9] Lavecchia A Di, Giovanni C, Pesapane A, et al. Discovery of new inhibitors of Cdc25B dual specificity phosphatases by structure-based virtual screening[J]. J Med Chem, 2012, 55(9): 4142
[10] Huang N, Kalyanaraman C, Bernacki K, et al. Molecular mechanics methods for predicting protein-ligand binding[J]. PCCP, 2006, 8(44): 5166
[11] Braud E, Goddard M L, Kolb S, et al. Novel naphthoquinone and quinolinedione inhibitors of CDC25 phosphatase activity with antiproliferative properties[J]. Bioorg Med Chem, 2008, 16 (19): 9040
[12] Spassov V Z,Yan L, Flook P K. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions[J]. Protein Sci, 2007, 16(3):494

相似文献/References:

备注/Memo

备注/Memo:
文章编号 1006-8147(2018)02-0131-04
基金项目 国家级大学生创新创业训练计划项目;天津市自然科学基金重点项目基金资助(16JCZDJC32500)
作者简介 李煜(1996-),男,学士在读,研究方向:计算机辅助药物设计;通信作者:马英,E-mail:maying@tmu.edu.cn。
更新日期/Last Update: 2018-03-20