[1] De La Vega J C, Hafeli U O. Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications[J]. Contrast Media Mol, 2015, 10(2): 81
[2] Hayashi H, Toyota T, Goto S, et al. Development of a non-blurring, dual-imaging tissue marker for gastrointestinal tumorlocalization[J]. Surg Endosc, 2015, 29(6): 1445
[3] Attia M F, Anton N, Chiper M, et al. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core[J]. ACS Nano, 2014, 8(10): 10537
[4] Badea C T, Athreya K K, Espinosa G, et al. Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent[J]. PLoS One, 2012, 7(4): e34496
[5] Bhavane R, Badea C, Ghaghada K B, et al. Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent[J]. Circ Cardiovasc Imag, 2013, 6(2): 285
[6] Ekdawi S N, Stewart J M P, Dunne M, et al. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopictumorxenograftmodel[J]. J Control Release, 2015, 207: 101
[7] Stapleton S, Allen C, Pintilie M, et al. Tumor perfusion imaging predicts the intra-tumoral accumulation of liposomes[J]. J Control Release, 2013, 172(1): 351
[8] Lin Q Y, Jin C S, Huang H, et al. Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model[J]. Small, 2014, 10: 3072
[9] Hill M L, Corbin I R, Levitin R B, et al. In vitro assessment of poly-iodinated triglyceride reconstituted low-density lipoprotein: initial steps toward CT molecular imaging[J]. Acad Radiol, 2010, 17(11): 1359
[10] deKrafft K E, Xie Z, Cao G, et al. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography[J]. Angew Chem Int Ed, 2009, 48(52): 9901
[11] Jin E, Lu Z R. Biodegradable iodinated polydisulfides as contrast agents for CT angiography[J]. Biomaterials, 2014, 35(22): 5822?
[12] Lee J Y, Chung S J, Cho H J, et al. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging[J]. Biomaterials, 2016, 85: 218
[13] Ghosh P, Das M, Rameshbabu A P, et al. Chitosan derivatives cross-linked with iodinated 2,5-dimethoxy-2,5-dihydrofuran for non-invasive imaging[J]. ACS Appl Mater Interfaces, 2014, 6(20): 17926
[14] Margel S, Galperin A, Aviv H, et al. Radiopaque polymeric nanoparticles for X-ray medical imaging. Nanotechnologies for the Life Sciences[M]. Wiley-VCH Verlag GmbH & Co KGaA, 2012: 343
[15] Hyafil F, Cornily J C, Feig J E, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography[J]. Nat Med (N Y, NY, U S), 2007, 13(5): 636
[16] Wang H, Zheng L, Peng C, et al. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma[J]. Biomaterials, 2013, 34(2): 470
[17] Wang H, Zheng L F, Guo R, et al. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging[J]. Nanoscale Res Lett, 2012, 7(1): 190
[18] Shi H Y, Wang Z M, Huang C S, et al. A functional CT contrast agent for in vivo imaging of tumorhypoxia[J]. Small, 2016, 12(29): 3995
[19] Liu X H, Gao C H, Gu J H, et al. Hyaluronic acid stabilized iodine-containing nanoparticles with Au nanoshell coating for X?ray CT imaging and photothermal therapy of tumors[J]. ACS Appl Mater Interfaces, 2016, 8(41): 27622
[20] Peng C, Li K, Cao X, et al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications[J]. Nanoscale, 2012, 4(21): 6768
[21] Ottaviano F G, Handy D E, Loscalzo J. Redox regulation in the extracellular environment[J]. Circ J, 2008, 72(1): 1
[22] Saito G, Swanson J A, Lee K D. Drug delivery strategy utilizing conjugation via reversible disul?de linkages: role and site of cellular reducing activities[J]. Adv Drug Deliv Rev, 2003, 55(2): 199
[23] Leamon C P, Cooper S R, Hardee G E. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo[J]. Bioconjug Chem, 2003, 14(4): 738
[24] Lu Y, Low P S. Folate-mediated delivery of macromolecular anticancer therapeutic agents[J]. Adv Drug Deliv Rev, 2002, 54(5): 675
[25] Weitman S D, Lark R H, Coney L R, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues[J]. Cancer Res, 1992, 52(12): 3396