|本期目录/Table of Contents|

[1]索慧荣.抗感染药物作用新靶点CrtN蛋白的结构及其与抑制剂萘替芬的作用机制研究[J].天津医科大学学报,2017,23(02):132-137.
 SUO Hui-rong.Study on the structure of anti-infective new target CrtN and its interaction mechanism with the inhibitor of naftifine[J].Journal of Tianjin Medical University,2017,23(02):132-137.
点击复制

抗感染药物作用新靶点CrtN蛋白的结构及其与抑制剂萘替芬的作用机制研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
23卷
期数:
2017年02期
页码:
132-137
栏目:
基础医学
出版日期:
2017-03-20

文章信息/Info

Title:
Study on the structure of anti-infective new target CrtN and its interaction mechanism with the inhibitor of naftifine
文章编号:
1006-8147(2017)02-0132-06
作者:
索慧荣
(天津医科大学第二医院药学部,天津 300211)
Author(s):
SUO Hui-rong
(Department of Pharmacy, The Second Hospital, Tianjin Medical University, Tianjin 300211, China)
关键词:
CtrN萘替芬同源模建分子动力学分子对接
Keywords:
CtrN naftifine homology modeling molecular dynamics docking
分类号:
R9
DOI:
-
文献标志码:
A
摘要:
目的:研究抗感染药物作用新靶点CrtN的结构及其与抑制剂萘替芬的作用机制,为新型CrtN抑制剂的发现奠定基础。方法:采用同源模建获得CrtN的三维结构,然后用分子动力学方法优化初始结构,并用Ramachandran图评估结果,最后通过活性位点搜索、分子对接和动力学模拟研究抑制剂萘替芬与CrtN的作用模式。结果:通过同源模建和动力学优化获得合理的CrtN结构用于药物与靶点的相互作用研究。对CrtN进行活性位点搜索,确定Site 4口袋作为萘替芬的结合位点。通过分子对接及动力学模拟发现萘替芬与M51、P53、I55、I85、P146、Y150、Y190、L311、L376等形成疏水作用,与Y354形成阳离子-π键作用。结论:首次对CrtN的三维结构进行研究,阐明了疏水和阳离子-π键作用是萘替芬对CrtN产生抑制活性的重要分子基础。

Abstract:
Objective: To study the structure of anti-infective new target CrtN and its interactions with the inhibitor naftifine, thus providing insights into the design of new CrtN inhibitors. Methods: The structure of CrtN was built using homology modeling and optimized by molecular dynamics, and its quality was estimated by Ramachandran plot. Through binding site prediction and dockingand molecular dynamics, the interaction mode of CrtN with its inhibitor naftifine was investigated. Results: After homology modeling and molecular dynamics, the reasonable structure of CrtN was obtained. Binding site prediction showed Site4 of CrtN was the binding site of naftifine. Docking andmolecular dynamics suggested that naftifine formed hydrophobic interactions with M51, P53, I55, I85, P146, Y150, Y190, L311 and L376, andcation-π interaction with Y354. Conclusion: This study shows the hydrophobic interactions and cation-π may be the main interactions resulting in inhibitory activity of naftifine against CrtN.

参考文献/References:

[1] Lowy F D. Staphylococcus aureus infections[J]. N Engl J Med, 1998, 339(8): 520

[2] Kloos W E, Jorgensen J H. Staphylococci. in Manual of Clinical Microbiology[M]. edn. 4. Washington DC:American Society for Microbiology, 1985:143-153

[3] Liu C I, Liu G Y, Song Y, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence[J]. Science, 2008, 319(5868): 1391

[4] Clauditz A, Resch A, Wieland K P, et al. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress[J]. Infect Immun, 2006, 74(8): 4950

[5] Liu G Y, Essex A, Buchanan J T, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity[J]. J Exp Med, 2005, 202(2): 209

[6] Chen F, Di H, Wang Y, et al. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence[J]. Nat Chem Biol, 2016, 12(3): 174

[7] Liu GY, Essex A, Buchanan JT, et al. Staphylococcus aureus golden pigment impairsneutrophil killing and promotes virulence through its antioxidantactivity[J]. J Exp Med, 2005, 202(2): 209

[8] Pelz A, Wieland K P, Putzbach K, et al. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus[J]. J Biol Chem, 2005, 280(37): 32493

[9] Kim S H, Lee P C. Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli[J]. J Biol Chem, 2012, 287(26): 21575

[10] 陈菲菲, 狄红霞, 蓝乐夫. 金黄色葡萄球菌重要毒力因子的功能及其抑制剂研究进展[J]. 科学通报, 2013, 58(36): 3743

[11] Wang Y, Chen F, Di H, et al. Discovery of Potent Benzofuran-Derived Diapophytoene Desaturase (CrtN) Inhibitors with Enhanced Oral Bioavailability for the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections[J].J Med Chem, 2016, 59(7):3215

[12] Wang Y, Di H, Chen F, et al. Discovery of Benzocycloalkane Derivatives Efficiently Blocking Bacterial Virulence for the Treatment of Methicillin-Resistant S. aureus (MRSA) Infections by Targeting Diapophytoene Desaturase (CrtN)[J].J Med Chem, 2016, 59(10):4831

[13] Schaub P, Yu Q, Gemmecker S, et al. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase[J]. PloS one, 2012, 7(6): e39550.

[14] Webb B, Sali A. Comparative protein structure modeling using Mod. Cur bioinform, 2014: 5

[15] Kleywegt GJ, Jones TA. Phi/psi-chology: Ramachandran revisited[J]. Structure, 1996, 4(12): 1395

[16] Eisenberg D, Luthy R, Bowie JU. VERIFY3D: Assessment of protein models with three-dimensional profiles[J]. Methods Enzymol, 1997, 277: 396

[17] Hess B, Kutzner C, Van Der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. J Chem Theory Comput, 2008, 4(3): 435

[18] Morris G M, Goodsell D S, Halliday R S, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. J Comput Chem, 1998, 19(14): 1639

[19] Gupta A K, Ryder J E, Cooper E A. Naftifine: a review[J]. J Cutan Med Surg, 2008, 12(2): 51

[20] Furubayashi M, Li L, Katabami A, et al. Construction of carotenoid biosynthetic pathways using squalene synthase[J]. FEBS letters, 2014, 588(3): 436

[21] Corradi H R, Corrigall A V, Boix E, et al. Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen[J]. J Biol Chem, 2006, 281(50): 38625

相似文献/References:

备注/Memo

备注/Memo:
?作者简介 索慧荣(1989-),女,药师,学士,研究方向:药物分子与靶点相互作用,E-mail:niuniufirstgirl@sina.com 。
更新日期/Last Update: 2017-03-28