目的:建立一种基于纳米粒子的时间分辨荧光共振能量转移(FRET)生物传感器用于miRNAs的无扩增检测。方法:以寡核苷酸单链probe I 偶联GdF3:Tb3+纳米粒子作为供体,以寡核苷酸单链probe II 偶联金(Au)纳米粒子作为受体,利用供体与受体之间的FRET检测目标miRNA hsa-miR-122-5p浓度,并通过设置多功能酶标仪的检测延迟去除自发荧光背景以提高灵敏度。结果:该传感器能够高灵敏度、高特异性的检测目标分子,并且对于光照有良好的耐受性,而且能够避免自发荧光干扰。 对hsa-miR-122-5p的检测线性范围为0.1 fmol/L~100 pmol/L,与同类型的RNA荧光传感器的最佳检测限具有可比性。结论:基于纳米粒子的时间分辨FRET生物传感器用于miRNAs的无扩增检测具有良好的灵敏度和特异性。
?
[1]Petri A, Lindow M, Kauppinen S. MicroRNA silencing in primates: towards development of novel therapeutics[J]. Cancer Res, 2009, 69(2): 393[2]Lowery A J, Miller N, Mcneill R E, et al. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast Cancer management[J]. Clin Cancer Res, 2008, 14(2): 360
[3]Shi Wei, Gerster K, Alajez N M, et al. MicroRNA-301 mediates proliferation and invasion in human breast Cancer[J]. Cancer Res, 2011, 71(8): 2926
[4]Mcdonald J S, Milosevic D, Reddi H V, et al. Analysis of circulating microRNA: preanalytical and analytical challenges[J]. Clin Chem, 2011, 57(6): 833
[5]Qavi A J, Kindt J T, Gleeson M A, et al. Anti-DNA:RNA antibodies and Silicon photonic microring resonators:increased sensitivity for multiplexed microRNA detection[J]. Anal Chem, 2011,83: 5949.
[6]P?hlmann C, Sprinzl M. Electrochemical detection of microRNAs via gap hybridization assay[J]. Anal Chem, 2010, 82(11): 4434
[7]Chan H M, Chan L S, Wong R N, et al. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy[J]. Anal Chem, 2010, 82(16): 6911
[8]Broyles D, Cissell K, Kumar M, et al. Solution-phase detection of dual microRNA biomarkers in serum[J]. Anal Bioanal Chem, 2012, 402(1): 543
[9]Ju Q, Liu Y S, Tu D T, et al. Lanthanide-Doped multicolor GdF3 nanocrystals for Time-Resolved photoluminescent biodetection[J]. Chem Eur J , 2011, 17(31): 8549
[10]Li J S, Schachermeyer S, Wang Y, et al. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals[J]. Anal Chem, 2009, 81(23): 9723
[11]Tu Y Q, Wu P, Zhang H, et al. Fluorescence quenching of Gold nanoparticles integrating with a conformation-switched hairpin oligonucleotide probe for microRNA detection[J]. Chem Commun, 2012, 48(87): 10718
[12]Baker M B, Bao G, Searles C D. In vitro quantification of specific microRNA using molecular beacons[J]. Nucleic Acids Res, 2012, 40(2): e13
[13]Labib M, Ghobadloo S M, Khan N, et al. Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA[J]. Anal Chem, 2013, 85(20): 9422
[14]Gu J Q, Shen J, Sun L D, et al. Resonance energy transfer in steady-state and time-decay fluoro-immunoassays for lanthanide nanoparticles based on biotin and avidin affinity[J]. J Phys Chem C, 2008, 112(17): 6589
[15]Tu D T, Liu L Q, Ju Q, et al. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals[J]. Angew Chem Int Ed Engl, 2011, 50(28): 6306
[16]Hu S, Yang H, Cai R X, et al. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay[J]. Talanta, 2009, 80(2): 454
[17]Jiang L, Duan D M, Shen Y, et al. Direct microRNA detection with Universal tagged probe and time-resolved fluorescence technology[J]. Biosens Bioelectron, 2012, 34(1): 291
[18]Yang Y H, Tu D T, Zheng W, et al. Lanthanide-doped Sr2YF7 nanoparticles: controlled synthesis, optical spectroscopy and biodetection[J]. Nanoscale, 2014, 6(19): 11098
[19]Zheng W, Zhou S Y, Chen Z, et al. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection[J]. Angew Chem Int Ed Engl, 2013, 52(26): 6671
基金项目 国家自然科学基金资助项目(21305103,21373151,31200753,21205087)
作者简介 张毅(1982-),女,博士,研究方向:纳米材料于生化分析的应用;通信作者:段宏泉,E-mail: duanhq@tijmu.edu.cn。
?