|本期目录/Table of Contents|

[1]丁 鑫,韩珍珍,菅喜岐.相控阵激励信号对经颅HIFU焦域影响的仿真研究[J].天津医科大学学报,2015,21(04):355-360.
 DING Xin,HAN Zhen-zhen,JIAN Xi-qi.Numerical simulation of the effect of driving signals by phased transducer on transcranial focal region[J].Journal of Tianjin Medical University,2015,21(04):355-360.
点击复制

相控阵激励信号对经颅HIFU焦域影响的仿真研究(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
21卷
期数:
2015年04期
页码:
355-360
栏目:
生物医学工程
出版日期:
2015-07-15

文章信息/Info

Title:
Numerical simulation of the effect of driving signals by phased transducer on transcranial focal region
文章编号:
1006-8147(2015)04-0355-06
作者:
丁 鑫韩珍珍菅喜岐
(天津医科大学生物医学工程与技术学院,天津 300070)
Author(s):
DING Xin HAN Zhen-zhen JIAN Xi-qi
(Department of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China)
关键词:
强度聚焦超声经颅聚焦相控换能器激励信号时间反转
Keywords:
high intensity focused ultrasound phased array transducer amplitude modulation transcranial focusing time reversal
分类号:
TB559
DOI:
-
文献标志码:
A
摘要:
 目的:研究相控阵激励信号对高强度聚焦超声(HIFU)经颅骨聚焦形成焦域的影响,解决HIFU经颅聚焦焦点偏离并对颅骨及其周边组织造成热损伤的问题。方法:基于时间反转法提出利用互相关关系调制阵元激励信号相位及幅值的方法,根据临床实际建立人头颅CT数据和相控阵的三维头颅数值仿真模型,以时域有限差分法数值仿真HIFU经颅形成的声压及温度场,分析相控阵激励信号对HIFU经颅形成焦域的影响。结果:通过调制相控阵激励信号的相位,可使HIFU在设定焦点处聚焦;通过调制激励信号的幅值,可使焦点处最大声压和最高温度升高;通过调制不同环阵元激励信号的幅值,可降低聚焦时颅骨处的温度。结论:调制相控阵激励信号可实现经颅HIFU精准高效聚焦,增大在焦点处的声能量聚积;调制不同环阵元激励信号的幅值,可降低颅骨的温度,防止对颅骨周边组织造成热损伤。
Abstract:
Objective: To investigate the effect of driving signals by phased transducer arrays on the transcranial focal region and to solve the problem of transcranial defocusing and thermal damage to the skull and tissue around it. MethodsMethod was put forward by modulating phase and amplitude of driving signals based on the time reversal and cross-correlation among signals. A numerical simulation model was established based on skull CT data and phased transducer. The finite difference time domain method was used to simulate the distribution of transcranial HIFU pressure and temperature fields to study the influence of driving signals by phased array on transcranial HIFU focal region. ResultsResults of numerical simulation indicated that focus was formed accurately at the target by modulating the phase of driving signals of transducer arrays; the maximum pressure and temperature at focus were increased by modulating the amplitude of driving signals by transducer arrays; temperature in skull was decreased by modulating the amplitude of different arrays of transducer. ConclusionBy modulating driving signals of phased array, we can achieve precise and effective transcranial focusing and the acoustic energy deposited at focus would increase. By modulating driving signals of different arrays, temperature decreases in skull thus avoiding thermal damage to skull and the surrounding tissue.

参考文献/References:

[1]熊六林. 高强度聚焦超(HIFU)治疗肿瘤原理及临床应用现状[J]. 中国医疗器械信息, 2009,15(3):17
[2]Pinton G, Aubry J F, Fink M, et al. Effects of nonlinear ultrasound propagation on high intensity brain therapy[J]. Med Phys, 2011,38(3):1207
[3]Westervelt P J. Parametric acoustic array[J]. J.Acoust.Soc, 2005,35:535
[4]Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. J Appl Physiol, 1948,1(2):93
[5]Aubry J F, Tanter M, Pernot M, et al. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans[J]. J Acoust Soc Am, 2003,113(1):84
[6]Mur G. Absorbing boundary conditions for the Finite-Difference approximation of the Time-Domain Electromagnetic-Field equations[J]. Electromagnetic Compatibility, IEEE Transactions on, 1981,EMC-23(4):377
[7]Clement G T, White P J, Hynynen K. Enhanced ultrasound transmission through the human skull using shear mode conversion[J]. J Acoust Soc Am, 2004,115(3):1356
[8]Pernot M, Aubry J F, Tanter M, et al.Prediction of the skull overheating during high intensity focused ultrasound transcranial brain therapy[C]//Ultrasonics Symposium, 2004 IEEE,2,2004:1005.
[9]Yuldashev P V, Shmeleva S M, Ilyin S A, et al. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array[J]. Phys Med Biol, 2013,58(8):2537
[10]Behnia S, Ghalichi F, Jafari, et al. Finite-element simulation of ultrasound brain surgery:effects of frequency,focal pressure,and scanning path in bone-heating reduction[J]. Cent Eur J Phys, 2008,6(2):211
[11]Kyriakou A, Neufeld E, Werner B, et al. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound[J]. Int J Hyperthermia, 2014,30(1):36
[12]Thomas J L, Fink M A. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal Mirror:application to transskull therapy[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1996,43(6):1122
[13]Tanter M, Thomas J L, Fink M. Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull[J]. J Acoust Soc Am, 1998,103(5 Pt 1):2403
[14]王意喆,张千,周文征,等. HIFU 经颅治疗中降低颅骨声压的仿真研究[J]. 计算机仿真, 2014,31(5):209
[15]Yin X, Hynynen K. A numerical study of transcranial focused ultrasound beam propagation at low frequency[J]. Phys Med Biol, 2005,50(8):1821
[16]Narumi R, Matsuki K, Mitarai S, et al. Focus control aided by numerical simulation in heterogeneous media for high-intensity focused ultrasound treatment[J]. Jpn J Appl Phys, 2013,52(7S): 07HF01-09

相似文献/References:

备注/Memo

备注/Memo:

基金项目 国家自然科学基金资助项目(81272495)

作者简介 丁鑫(1990-),女,硕士在读,研究方向:医学超声;通信作者:菅喜岐,E-mail:jianxiqi@tijmu.edu.cn

更新日期/Last Update: 2015-07-17