文章编号 1006-8147(2023)06-0622-06

论著

GSDMD 单域抗体的筛选及功能探究

高秋雲,孙亚楠,马振毅

622

(天津医科大学基础医学院生物化学与分子生物学系,天津 300070)

摘要 目的: 筛选并验证 gasdermin D(GSDMD)单域抗体(single-domain antibody, sdAb)及其生物学功能。方法: 利用原位邻近连 接分析(in situ proximity ligation assay, isPLA)结合高通量测序筛选抗 GSDMD sdAbs 候选序列;利用 isPLA、Co-IP、GST pull down、等温滴定量热法(isothermal titration calorimetry, ITC)验证这些 sdAbs 与 GSDMD 的特异性结合;在脂多糖(LPS)和 nigericin 处理的细胞焦亡模型中,观察细胞表型变化;检测细胞上清液中白细胞介素 1-B(IL-1B)水平变化以及乳酸脱氢酶(LDH)的释 放;通过 Western 印迹检测经上述处理后的细胞中 GSDMD 以及 GSDMD N 端结构域(GSDMD N terminus, GSDMD-NT)量的变 化。结果:通过 isPLA 结合高通量测序方法筛选出 GSDMD sdAb 的候选序列,其中 sdAb #26 与 GSDMD C 端结构域(GSDMD C terminus, GSDMD-CT)相互作用;与 sdAb Con 对照组相比, sdAb #26 处理高表达 GSDMD 细胞产生焦亡表型的细胞显著增多; 细胞上清中释放的 IL-1β 以及 LDH 显著提高(t=68.54,P<0.001;t=5.909,P<0.01);GSDMD-NT 产生量显著增加。结论:GSDMD sdAb 具备操控 GSDMD 介导焦亡的潜力,为焦亡相关疾病的治疗提供了新思路。

关键词 细胞死亡;焦亡;gasdermin D;单域抗体;筛选

中图分类号 R34

文献标志码 A

Screening and functional investigation of anti-GSDMD single-domain antibodies

GAO Qiu-yun, SUN Ya-nan, MA Zhen-yi

(Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China)

Abstract Objective: To screen and investigate single-domain antibodies (sdAbs) against gasdermin D (GSDMD) and their biological functions. Methods: Using in situ proximity ligation assay (isPLA) followed by high-throughput sequencing, the candidate sequences of anti-GSDMD sdAbs were obtained. The specific binding of these sdAbs against GSDMD was verified by isPLA, Co-IP, GST pull down, and isothermal titration calorimetry (ITC), respectively. In the pyroptosis model of lipopolysaccharide (LPS) and nigericin treated THP-1 cells, the cellular morphology, the level of interleukin-1β(IL-1β) and the release of lactate dehydrogenase(LDH) in cell supernatants were detected. Western blotting was also used to detect the expression of GSDMD and GSDMD N-terminal domain(GSDMD-NT) in the above treated cells. Results: The candidate sequences of anti-GSDMD sdAbs were screened by is PLA followed by high-throughput sequencing. One of them, sdAb #26 was verified to interact with the C-terminus of GSDMD(GSDMD-CT). Compared with the sdAb control group, the number of cells producing pyroptosis morphology in high expression GSDMD cells treated with sdAb #26 was significantly increased. The release of IL-1β and LDH in cell supernatants significantly increased(t=68.54,P<0.001; t=5.909,P<0.01). The production of GSDMD-NT significantly increased. Conclusion: Anti-GSDMD sdAb has the potential to manipulate GSDMD-mediated pyroptosis, which may provide a novel manipulation for the treatment of pyroptosis-related diseases.

Key words cell death; pyroptosis; gasdermin D; single-domain antibody; screening

细胞焦亡(pyroptosis)是一种程序性细胞死亡 方式, 其特定的细胞形态特征是形成气泡样囊泡, 细胞体积增大,细胞器变形,细胞核变小,导致细胞 膜破裂門。细胞焦亡在细胞增殖、微生物感染、肿瘤的 发生和转移以及细胞死亡过程中发挥重要作用四。 GSDMD 是目前研究最多,机制研究相对完整的一 种焦亡相关蛋白^[3],含有 N 端结构域(GSDMD-NT)

基金项目 天津市教委科研计划(2021KJ251)

作者简介 高秋雲(1995-),女,硕士在读,研究方向:生物化学与分子 生物学;通信作者:孙亚楠,E-mail:yanansun@tmu.edu.cn;马振 毅,E-mail:zhyma@tmu.edu.cn。

和 C 端结构域(GSDMD-CT)[4],主要表达于免疫细 胞和小肠黏膜上皮细胞表面[5]。由于 GSDMD 是焦亡 的执行蛋白®,理论上可以通过调控 GSDMD 的功能 来操控焦亡过程。

单域抗体(sdAb)又称纳米体(nanobody),相对 分子质量为 15 000~20 000 Da。它由 4 个框架区 (FR1~FR4)和3个互补决定区(CDR1、CDR2、CDR3) 组成,其中 CDR3 是主要特异性抗原识别的区段[7]。 与传统抗体相比,sdAb 具有分子量小、特异性强、高 亲和力和跨膜运输等特性,能够靶向细胞内抗原, 在疾病的诊断和治疗方面具有广阔的应用前景[®]。

基于此,笔者试图通过筛选抗 GSDMD 的 sdAb,来调控 GSDMD 介导的焦亡,为临床上控制焦亡相关疾病的进展提供新思路。

1 材料与方法

1.1 实验材料 细胞系:人源单核细胞 THP-1、胚肾细胞 293T、宫颈癌细胞 HeLa、骨肉瘤细胞 U2OS、结肠癌细胞 HT29、淋巴瘤细胞 U937、非小细胞肺癌细胞 A549 均为本实验室保存;DMEM、胎牛血清购自 Biological Industries 公司;原位邻位连接(isPLA)相关试剂购自 Sigma-Aldrich;Protein G Sepharose 4 Fast Flow,Glutathione Sepharose 4B 和 Ni2+NTA agarose beads 均购自 Cytiva;白细胞介素(IL)-1β ELISA 检测试剂盒购自需菜宝。

1.2 实验方法

1.2.1 细胞培养 293T、HeLa、U2OS 和 HT29 细胞 用含有 10%胎牛血清、100 U/mL 青霉素和 100 μg/mL 链霉素、非必需氨基酸的 DMEM 培养液;THP-1、A549 和 U937 细胞用含有 10%胎牛血清、100 U/mL 青霉素和 100 μg/mL 链霉素、非必需氨基酸的 RPMI-1640 培养液,于 37℃,5% CO₂ 的恒温培养箱培养。1.2.2 isPLA 结合高通量测序筛选抗 GSDMD 的 sdAbs 将实验室前期构建的 Flag-sdAb 文库和 HA-GSDMD 以及阴性对照质粒共转染进 HEK293T 细胞中,48 h 后收集细胞,随后对收集的细胞进行 PLA 实验,在 isPLA 后,通过流式细胞仪分选红色炭光信号的细胞,将阳性细胞作为模板扩增 CDR3 区,构建 sdAb 亚库,重复上述步骤进行 3 轮筛选,最终将扩增 CDR3 产物送至诺禾致源公司进行二代测序。实验方法参照相关文献^[9]。

1.2.3 细胞 is PLA 实验 将筛选到的 CDR3 序列构建到带有 3×Flag 的 sdAb 骨架载体上,同阴性对照质粒一起分别和 HA-GSDMD、GSDMD-NT、GSD-MD-CT 共转入 HEK293T 中。隔天将细胞铺至载玻片上,待细胞贴壁后进行 PLA 实验,DAPI 染核后,封片,避光低温保存。实验方法参照相关文献^[9]。

1.2.4 GST pull down 实验 分别将 GSDMD 构建在 GST 标签的原核表达载体上,筛选的 sdAb 序列构建在 His 标签的原核表达载体上,进行原核诱导表达,菌液中加入 IPTG 至终浓度 0.2 mmol/L,16℃诱导过夜。将菌液超声破碎后离心收集上清,分别加入 GST 珠子和 Ni 珠,4℃摇床孵育 2 h。孵育结束后,将珠子用新鲜裂解液洗涤 3 次,将 His 标签蛋白使用 50 mmol/L 咪唑洗杂后,用 300 mmol/L 咪唑将 His 标签蛋白洗脱下来。将洗脱下来的 His 标签蛋白加入到结合了

GST 标签蛋白的珠子中,4℃摇床孵育 2 h。结合结束后,使用裂解液洗去非特异结合蛋白并将样品进行考马斯亮蓝染色。

1.2.5 Co-IP 实验 分别将带有 HA 标签的 GSD-MD 和带有 Flag 标签的 sdAb Con、sdAb #3、sdAb #26 共转到 HEK293T 细胞中,48 h 后收集细胞并在冰上超声裂解,向离心后的样品中加入少量 Protein G 珠子孵育 2 h 以去除非特异结合。然后去掉 Protein G 珠子,向只转染了 HA-GSDMD 的样品中加入 IgG 抗体,另外 3 组样品中加入 Flag 抗体,4℃摇床过夜孵育。第 2 天,向每组样品中加入 Protein G 珠子,4℃摇床孵育 2 h,孵育结束后收集珠子并煮样,再进行 Western 印迹检测。

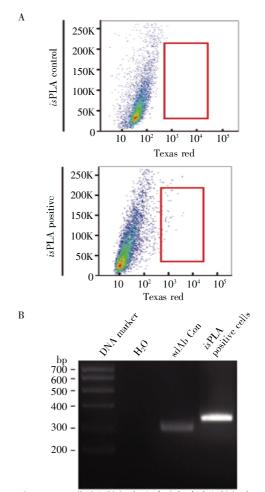
1.2.6 等温滴定量热实验 首先在大肠杆菌 BL21 (DE3)中诱导表达 GST-GSDMD 和 8×His-SUMO-TEV site-sdAb #26,将 GST-GSDMD 结合 GST 珠子 后使用 10 mmol/L 还原性谷胱甘肽洗脱。8×His-SUMO-sdAb 和 Ni 珠结合后,加入 TEV 酶切过夜, 得到纯化的 sdAb。使用 10 000 Da 的超滤管将所 有纯化好的蛋白溶于 50 mmol/L Tris, pH 7.5, 200 mmol/L NaCl 溶液中。启动 MicroCal VP-ITC 仪 器, 在加样池加入 10 µmol/L 的 GST 或 GST-GSD-MD, 在滴定池加入 300 µmol/L 的 sdAb Con 或 sdAb #26 进行测定,使用 MicroCalPEAQ-ITC 分析软 件计算出解离常数,并使用 Origin 7.0 做出拟合曲线。 1.2.7 sdAb 纯化 将重组质粒 GST-TEV sitesdAb-ETA-3×Flag 转化进入大肠杆菌 BL21 (DE3)中, 当菌液 OD 值达到 0.8 时, 加入 IPTG 至终浓度0.2 mmol/L,16℃诱导过夜。摇菌结束后离 心收集菌体,将菌体冰上超声后,12 000 r/min 离心 30 min 收集上清。在上清中加入 GST 珠子,4℃摇床 孵育 2 h 后收集珠子,取少量珠子煮沸进行考马斯亮 蓝,与BSA进行对比,估算出原珠子中含有的蛋白 量,以 sdAb:TEV=10:1 的比例向珠子中加入 TEV 酶,4℃过夜收集去除了 GST 标签的 sdAb。

1.2.8 细胞上清中 LDH 释放量检测 将 THP-1 细胞铺入 96 孔板中,并将纯化好的 sdAb Con、sdAb #26 加入细胞中过夜,12 h 后用 1 μg/mL LPS 预处理 4 h,再用 10 μmol/L nigericin 处理 1 h 后,收集检测细胞上清中 LDH 的释放量,检测方法参照试剂 盒说明书进行。

1.2.9 ELISA 检测细胞上清 IL-1β 蛋白水平 将 THP-1 细胞铺入 24 孔板中,过夜贴壁后,将纯化的 sdAb Con、sdAb #26 加入细胞中过夜,12 h 后用 1 μg/mL LPS 预处理 4 h,再用 10 μmol/L nigericin 处

理 1 h 后, 收集细胞上清培养液检测 IL-1β 浓度, 检测方法参照试剂盒说明书进行。

1.2.10 Western 印迹实验 提取各组细胞蛋白,按常规步骤进行 Western 印迹分析,一抗:GSDMD(1:1 000)、FLAG(1:5 000)、HA(1:1 000)、ACTB(1:5 000)。4℃孵育过夜,室温二抗孵育 1 h,显影并曝光。

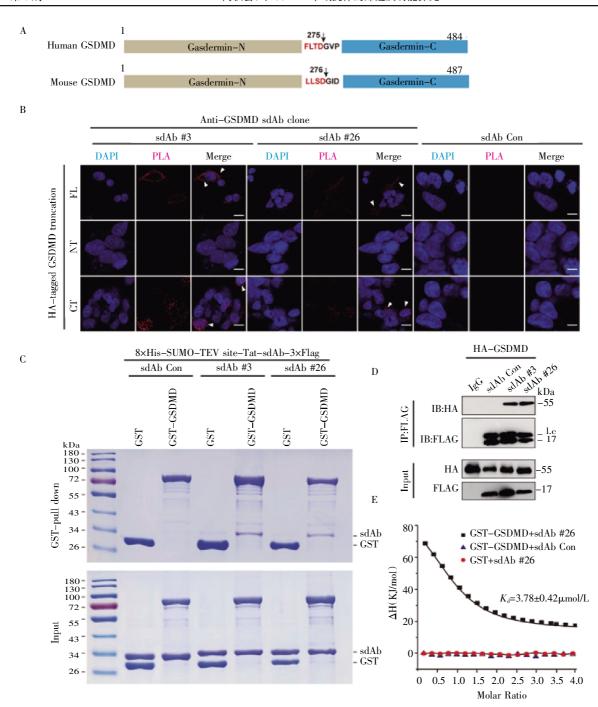

1.3 统计学处理 所有数据为 3 次独立实验,符合 正态分布的计量资料使用均值±标准差表示,数据分 析采用双因素方差分析,P<0.05 为差异具有统计学 意义。

2 结果

2.1 GSDMD sdAb 的筛选 *is*PLA 后,流式分选出 红色荧光信号的阳性细胞,对照组为带有 HA 标签 的空载体和 sdAb 文库(图 1A)。将阳性细胞作为模 板通过聚合酶链反应,扩增 CDR3 区,片段大小为 325 bp(图 1B)。经 3 轮筛选后,将富集的 CDR3 区 进行序列测定,得到如表 1 所列的 CDR3 氨基酸序列。接下来,通过 PRODIGY 网站预测候选 sdAb 和 GSDMD 相互作用的亲和力,选出两条亲和力较强的 sdAb #3 和 #26 进行验证。

表 1 由 isPLA-seq 筛选得到的抗 GSDMD 单域抗体 CDR3 序列 Tab 1 The CDR3 sequences of the anti-GSDMD sdAb obtained by isPLA-seq screening

/亡 口	复其验应和	壬与火业
编号	氨基酸序列	重复次数
1	VGCDRCWQMDVTGTMQHNLRS	212 535
2	VPARALKDRWIIRTGCGTGRS	137 100
3	PVELADLDSSPVYTVVSSLIG	127 790
4	GRRIPYSVGCHRVWMQAVSIA	78 841
5	CSVTALMIARLTSKIRGTVSG	76 361
6	FVPGQQASGWFYLAPHTECLL	57 512
7	HGSTCQSTGHDRGSAVGALDV	42 466
8	PDWRRSRRGDSTSIICQGTTC	42 376
9	EVTLLVAACCRYNGRWRNGVD	34 349
10	PGGGSAYLTMGIRYVHWYCSH	26 801
11	HDLKCTFFAIRRVRSGLLGAR	18 899
12	GVLMQLRSKSGRVPIEGVTFV	17 684
13	LRCSISGHALSSLEHSEKRCV	14 812
14	IRFATGQCALFEESRMVLDRD	12 624
15	TPGGACAQSCRLRRYEKAAHL	10 578
16	TWVYISSQACWRVTVSLSATG	20 088
17	RAGVCGVVGSFSMYTIGNWVY	6 903
18	SDRAGSTTGRFATLDPRIDVP	4 992
19	ECSASAFDIVVGVRIIRLDWP	3 063
20	YDRVGGGHVLIACYSDDLCMG	2 569
21	IVTGLNCRFVAGSRGVSYHKA	1 251
22	YSFWWRLVRSTPRVAVQPFIS	1 216
23	ARARCSTAVRPSLTDYWTLAV	1 070
24	CVSSRLADWIMFSAYLYRMNR	1 007
25	VCLPGAAPAMFILLARHAESC	995
26	GPGRDHGCWSGRDVRLTWEYG	962
26	GPGRDHGCWSGRDVRLTWEYG	962

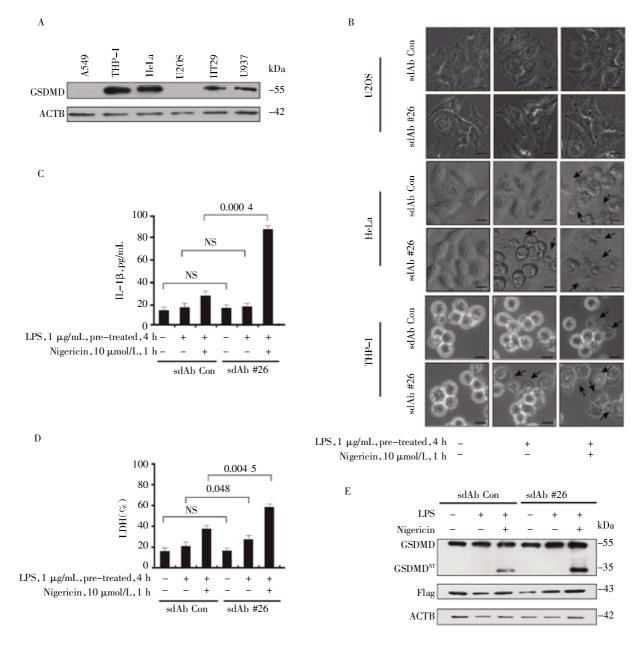


注:A:FACS 分选阳性细胞;红色方框中为阳性细胞;B:用琼脂糖凝胶电泳检测 isPLA 阳性细胞 CDR3 区 PCR 扩增产物;sdAb Con、isPLA positive cells、H₂O: 以 sdAb Con、isPLA 阳性细胞和 H₂O 为模板扩增产物;bp:碱基对

图 1 通过 is PLA-seq 筛选 GSDMD 单域抗体

Fig 1 Single –domain antibodies against GSDMD screening by isPLA–seq

2.2 GSDMD 的 sdAb #3 和 sdAb #26 与 GSDMD 特异性结合 由细胞 isPLA 实验结果可知, sdAb #3 和 #26 与 GSDMD 全长及 GSDMD-CT 产生了相互 作用,而不和 GSDMD-NT 互相作用(图 2A、2B)。为 了进一步验证这两条 sdAb 与 GSDMD 的结合是否 为直接相互作用,笔者通过使用含有 GST 标签的 GSDMD 与 His 标签的 sdAb 进行 pull down 实验。 结果显示,在 GST 标记 GSDMD 中检测到 His 标记 的 sdAb,与 isPLA 数据一致(图 2C)。接着,将带有 Flag 标签的 sdAb 和带有 HA 标签的 GSDMD 共转 进 293T 细胞中,通过 Co-IP 实验,再次证实 sdAb #3 和 sdAb #26 分别和 GSDMD 相互作用(图 2D)。 最后,通过ITC 实验测定了 GST-GSDMD 和 sdAb #26 之间的解离常数 (dissociation constant, K_d)为 (3.78±0.42)µmol/L,而 GST-GSDMD 和 sdAb Con 以 及 GST 和 sdAb #26 之间都不发生互相作用(图 2E)。



注:A:GSDMD 结构域的示意图;B:细胞 isPLA 检测 GSDMD 和单域抗体结合;FL:GSDMD;NT:GSDMD N 端;CT:GSDMD C 端;白色箭头指示:isPLA 的阳性信号;比例尺:10 μm;C:GST pull down 检测 GSDMD 和单域抗体结合;D:Co-IP 检测 GSDMD 和单域抗体结合;E:ITC 实验测定GSDMD 和单域抗体结合的 K_d值

图 2 抗 GSDMD 的 sdAb #3 和 sdAb #26 与 GSDMD 直接结合 Fig 2 GSDMD-resistant sdAb #3 and sdAb #26 binding directly to GSDMD

2.3 GSDMD 的 sdAb #26 促进 GSDMD 介导的焦亡 Western 印迹检测 GSDMD 在不同细胞类型中的蛋白表达情况,结果显示,HeLa 和 THP-1 细胞高表达 GSDMD 蛋白,U2OS 细胞不表达 GSDMD 蛋白(图 3A)。用 sdAb #26 过夜预处理再用 LPS/nigericin诱导后,显微镜下观察在高表达 GSDMD 的 HeLa 和 THP-1 细胞中,与加入 sdAb Con 的细胞相比,细胞焦亡表型明显增多,细胞肿胀膨大,并且有许多气

泡状突出物(图 3B,箭头所示),而在不表达 GSDMD 的 U2OS 细胞中则没有观察到此表型(图 3B)。此外,用上述同样条件处理 THP-1 细胞,培养液上清中的 IL-1β 和 LDH 含量显著增加(图 3C、3D)。通过 Western 印迹检测 GSDMD 和 GSDMD-NT 蛋白含量的变化。结果表明,与对照组相比,加入 sdAb #26 的 THP-1 细胞中 GSDMD-NT 产生水平显著增加(图 3E)。

注:A:GSDMD 在不同细胞系中的表达情况;B:显微镜下观察 U2OS、HeLa、THP-1 细胞形态;黑色箭头:焦亡细胞;比例尺:10 μm;C:ELISA 检测 THP-1 培养基中的 IL-1β 含量;D:THP-1 细胞上清中 LDH 释放量检测;E:Western 印迹检测 THP-1 细胞GSDMD(54 000 Da)、GSDMD-NT (32 000 Da)的蛋白量;GSDMD^{NT}:GSDMD N 端;NS:无统计学意义

图 3 sdAb #26 促进由 GSDMD 介导的细胞焦亡

Fig 3 $\,$ sdAb #26 promotes pyroptosis mediated by GSDMD

3 讨论

GSDMD 是焦亡的执行蛋白之一,调控生理和病理状态下机体的稳态。本研究通过 isPLA 结合高通量测序技术筛选出抗 GSDMD 的 sdAb,验证筛选出的 sdAb #3 和 #26 能与 GSDMD-CT 特异性结合,并初步探究此 sdAb #26 能促进 GSDMD 介导的细胞焦亡。细胞焦亡主要通过两种途径发生:一种是依赖 caspase—1 的经典途径,另一种是依赖 caspase—4、5、11 的非经典途径^[10]。当细菌、病毒入侵宿主时,

细胞内的模式识别受体感受到这些刺激后,激活 caspase,使其对 GSDMD 进行切割活化,产生具有活性的 GSDMD-NT,其与细胞质膜内侧的磷酸肌苷结合,在细胞膜上进行打孔,使细胞破裂,释放细胞炎性因子[11]。通常认为,GSDMD-NT和 GSDMD-CT之间能够形成自我抑制的非活性形式,但最近有文献报道,切割后的 GSDMD-CT 通过与 GSDMD-NT形成大的疏水相互作用,阻止 GSDMD-NT 在孔形成时发生构象变化,这可能也是调控 GSDMD-NT介

导焦亡的策略之一[12]。本文筛选得到的 sdAb #3 和 #26 能够与 GSDMD-CT 结合,促进细胞焦亡的发生,可能是该 sdAb 与 GSDMD-CT 结合后解除了对 GSDMD-NT 的抑制,最终使细胞膜上打孔,促进细胞焦亡。

已有研究认为,革兰阴性菌脂多糖成分在细胞 内直接激活 caspase-4、5、11,这些被激活的 caspase 会切割 GSDMD,引起细胞发生焦亡[13]。另有报道认 为,当机体被 HIV 感染时,体内的 CARD-8 炎性小 体可以识别 HIV 蛋白酶,从而引起 HIV 蛋白酶对 CARD-8 炎性小体进行切割,进而激活caspase-1 和 GSDMD,使感染 HIV 的细胞发生焦亡,减少 HIV 在 体内的复制和传播[14]。可见,焦亡对于一些特定细菌 和病毒感染后的机体具有一定的保护作用,因此通 过开发促焦亡作用的 sdAb 可能给 HIV 等病原微生 物感染的治疗提供新策略。目前研究也证实,焦亡 可作为肿瘤抑制途径,发挥抗肿瘤作用[15]。如 2-(萘 甲酰基)乙基三甲基碘化铵(α-NETA)通过 GSD-MD/caspase-4途径诱导上皮性卵巢癌细胞焦亡,显 著降低了小鼠上皮性卵巢癌的进展[16]。此外,在部分 肿瘤细胞中诱导焦亡导致 T 细胞依赖性肿瘤消退, 同时伴随着T细胞、NK细胞、M1巨噬细胞群的增 加以及调节性 T 细胞、M2 巨噬细胞、中性粒细胞和 髓系衍生抑制细胞群的减少,提示焦亡与细胞毒性 淋巴细胞可相互促进,通过正反馈环路促进抗肿瘤 免疫作用[17]。另外,目前肿瘤的治疗大多通过化疗, 其次免疫检查点阻断也广泛应用于肿瘤的治疗,而 肿瘤抗原的缺乏以及不能有效并快速启动体内的 适应性免疫是免疫治疗效果较差的重要原因[18]。但 焦亡的细胞会释放肿瘤抗原以及启动体内的适应 性免疫,这使得如何有效并快速诱导肿瘤细胞焦亡 成为了研究热点[19]。然而,焦亡也是一把双刃剑,大 量正常细胞发生焦亡可导致过度的炎症,IL-1B、 IL-18 的释放又可激活免疫细胞向感染部位聚集, 大量炎性细胞浸润,再次加剧炎症因子释放,导致 内脏器官衰竭或细胞因子释放综合征的发生,从而 危及生命[12]。

综上所述,本文利用 is PLA 结合高通量测序的 方法成功筛选到 GSDMD 的 sdAb,并在细胞内验证 了其促进焦亡的功能,为 GSDMD sdAb 的临床转化 研究提供了新思路。

参考文献:

- [1] SHI J,GAO W,SHAO F. Pyroptosis:gasdermin –mediated pro grammed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245–254.
- [2] WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyrop-

- tosis through caspase -3 cleavage of a gasdermin [J]. Nature, 2017, 547(7661):99-103.
- [3] GAO L, DONG X, GONG W, et al. Acinar cell NLRP3 inflammasome and gasdermin D (GSDMD) activation mediates pyroptosis and systemic inflammation in acute pancreatitis[J]. Br J Pharmacol, 2021, 178(17):3533-3552.
- [4] EVAVOLD C L, HAFNER-BRATKOVIC I, DEVANT P, et al. Control of gasdermin D oligomerization and pyroptosis by theragulator-Rag-mTORC1 pathway[J]. Cell, 2021, 184(17):4495-4511, e4419.
- [5] COLL R C, SCHRODER K, PELEGRIN P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci, 2022,43(8):653-668.
- [6] HE W T, WAN H, HU L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion[J]. Cell Res, 2015, 25(12):1285-1298.
- [7] ROSSOTTI M A, BELANGER K, HENRY K A, et al. Immunogenicity and humanization of single-domain antibodies[J]. FEBS J, 2022, 289(14):4304-4327.
- [8] WILTON E E, OPYR M P, KAILASAM S, et al. sdAb-DB: the single domain antibody database [J]. ACS Synth Biol, 2018, 7 (11): 2480-2484.
- [9] YIN Y, YAN F, ZHOU R, et al. Single-domain antibody screening by is PLA-seq[J]. Life Sci Alliance, 2022, 5(1):e202101115.
- [10] LI Z, LIU W, FU J, et al. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11[J]. Nature, 2021, 599(7884); 290-295.
- [11] PANDEYA A, LI L, LI Z, et al. Gasdermin D(GSDMD) as a new target for the treatment of infection [J]. Medchemcomm, 2019, 10 (5): 660–667.
- [12] BURDETTE B E, ESPARZA A N, ZHU H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021, 11(9): 2768–2782.
- [13] KESAVARDHANA S, MALIREDDI R K S, KANNEGANTI T D. Caspases in cell death, inflammation, and pyroptosis [J]. Annu Rev Immunol, 2020, 38: 567–595.
- [14] COMOR L, DOLINSKA S, BHIDE K, et al. Joining the in vitro immunization of alpaca lymphocytes and phage display: rapid and cost effective pipeline for sdAb synthesis [J]. Microb Cell Fact, 2017, 16(1):13.
- [15] HOU J, HSU J M, HUNG M C. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity[J]. Mol Cell, 2021,81(22):4579–4590.
- [16] QIAO L, WU X, ZHANG J, et al. alpha-NETA induces pyroptosis of epithelial ovarian cancer cells through the GSDMD/caspase-4 pathway[J]. FASEB J, 2019, 33(11):12760-12767.
- [17] WANG Q, WANG Y, DING J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis[J]. Nature, 2020, 579(7799): 421–426.
- [18] HUMPHRIES F, SHMUEL-GALIA L, KETELUT-CARNEIRO N, et al. Succination inactivates gasdermin D and blocks pyroptosis [J]. Science, 2020, 369(6511):1633-1637.
- [19] CHEN H, LI Y, WU J, et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis [J]. Cell Death Differ, 2020, 27(9); 2568–2585.

(2023-06-15 收稿)