|本期目录/Table of Contents|

[1]刘峥,谢云.BMPER通过Wnt/β-catenin信号通路减轻高糖高脂对MC3T3-E1细胞成骨分化的抑制[J].天津医科大学学报,2022,28(04):378-382.
 LIU Zheng,XIE Yun.BMPER alleviates suppression of osteogenic differentiation by high glucose and high lipid in MC3T3-E1 cells via Wnt/β-catenin signaling pathway[J].Journal of Tianjin Medical University,2022,28(04):378-382.
点击复制

BMPER通过Wnt/β-catenin信号通路减轻高糖高脂对MC3T3-E1细胞成骨分化的抑制(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
28卷
期数:
2022年04期
页码:
378-382
栏目:
基础医学
出版日期:
2022-07-20

文章信息/Info

Title:
BMPER alleviates suppression of osteogenic differentiation by high glucose and high lipid in MC3T3-E1 cells via Wnt/β-catenin signaling pathway
文章编号:
1006-8147(2022)04-0378-05
作者:
刘峥谢云
(天津医科大学朱宪彝纪念医院老年病科,天津市内分泌研究所,国家卫生健康委员会激素与发育重点实验室,天津市代谢性疾病重点实验室,天津300134)
Author(s):
LIU ZhengXIE Yun
(Department of Geriatrics,Chu Hsien-I Memorial Hospital,Tianjin Medical University,Tianjin Institute of Endocrinology,NHC Key Laboratory of Hormones and Development,Tianjin Key Laboratory of Metabolic Diseases,Tianjin 300134,China)
关键词:
Wnt信号通路BMPER骨质疏松MC3T3-E1细胞2型糖尿病
Keywords:
Wnt signaling pathwayBMPERosteoporosisMC3T3-E1 celltype 2 diabetes
分类号:
R589.9
DOI:
-
文献标志码:
A
摘要:
目的:探究骨形态发生蛋白内皮细胞前体来源调节因子(BMPER)在成骨分化中的生物学作用。方法:将MC3T3-E1细胞分为对照(control)组、成骨诱导(OM)组和成骨诱导+高糖高脂(OM+HG/PA)组。采用Western印迹法检测各组细胞Runt相关转录因子2(Runx2)、Ⅰ型胶原α1(Col1α1)、BMPER的表达。将空载体对照质粒及BMPER过表达质粒转染到MC3T3-E1细胞中,将细胞分为p-NC和p-BMPER组。使用Western印迹法检测各组细胞BMPER、Runx2、Col1α1、Wnt1、Wnt3a、active β-catenin表达。碱性磷酸酶(ALP)染色检测BMPER对成骨分化的影响。应用非特异性siRNA及合成的靶向沉默BMPER小干扰RNA(siRNA)转染MC3T3-E1细胞,将细胞分为si-NC组及si-BMPER组,使用Western印迹法检测各组细胞Wnt1、Wnt3a、active β-catenin表达。结果:与OM组相比,OM+HG/PA组中Runx2、Col1α1、BMPER蛋白表达显著减少(t=7.572、 8.568、10.742,均P< 0.05)。与p-NC组相比,p-BMPER组Runx2、Col1α1、Wnt1、Wnt3a、active β-catenin蛋白表达水平显著升高(t=9.816、8.331、8.413、14.343、9.156,均P<0.05),ALP染色加深。与si-NC组相比,si-BMPER组Wnt1、Wnt3a、active β-catenin的表达显著下调(t=10.807、8.678、10.167,均P<0.05)。结论:BMPER通过Wnt/β-catenin信号通路减轻高糖高脂对MC3T3-E1细胞成骨分化的抑制。
Abstract:
Objective: To explore the biological role of bone morphogenetic protein endothelial cell precursor-derived regulator(BMPER) in osteogenic differentiation. Methods: MC3T3-E1 cells were divided into control group,osteogenic medium(OM group) and osteogenic medium+high glucose/palmitate(OM+HG/PA group). The expression of Runt related transcription factor 2(Runx2) and type Ⅰ collagen α 1(Col1 α 1) and BMPER were detected by Western blotting. Empty vector control plasmid and BMPER overexpression plasmid were transfected into MC3T3-E1 cells,and the cells were divided into p-NC and p-BMPER groups. The expression of Runx2,Col1α1,BMPER,Wnt1,Wnt3a,active β-catenin in MC3T3-E1 cells were detected by Western blotting. The effect of BMPER on osteogenic differentiation was detected by alkaline phosphoric acid(ALP) staining.MC3T3-E1 cells were transfected with non-specific siRNA and targeted silencing BMPER siRNA. The cells were divided into si-NC group and si-BMPER group. The expression of Wnt1,Wnt3a,active β-catenin in MC3T3-E1 cells was detected by Western blotting. Results: Runx2,Col1α1 and BMPER expression was decreased in the OM+HG/PA group compared with the OM group(t=7.572,8.568,10.742,all P<0.05). Compared with the p-NC group,Runx2,Col1α1,Wnt1,Wnt3a and active β-catenin protein levels were significantly increased in the p-BMPER group(t=9.816,8.331,8.413,14.343,9.156,all P<0.05).BMPER overexpression deepened ALP staining. Compared with si-NC group,the expression of Wnt1,Wnt3a and active β-catenin was significantly downregulated in si-BMPER group(t=10.807,8.678,10.167,all P<0.05).Conclusion: BMPER alleviates suppression of osteogenic differentiation by high glucose and high lipid in MC3T3-E1 cells via Wnt/β-catenin signaling pathway.

参考文献/References:

[1] SEALAND R,RAZAVI C,ADLER R A. Diabetes mellitus and osteoporosis [J]. Curr Diab Rep,2013,13(3):411-418.
[2] KURRA S,FINK D A,SIRIS E S. Osteoporosis-associated fracture and diabetes[J]. Endocrinol Metab Clin North Am,2014,43(1):233-243.
[3] YAMAMOTO M,SUGIMOTO T. Advanced glycation end products,diabetes,and bone strength[J]. Curr Osteoporos Rep,2016,14(6): 320-326.
[4] ANTONOPOULOU M,BAHTIYAR G,BANERJI M A,et al. Diabetes and bone health[J]. Maturitas,2013,76(3):253-259.
[5] MASCITELLI L,PEZZETTA F. Diabetes and osteoporotic fractures[J]. CMAJ,2007,177(11):1391-1392.
[6] MOSER M,BINDER O,WU Y,et al. BMPER,a novel endothelial cell precursor-derived protein,antagonizes bone morphogenetic protein signaling and endothelial cell differentiation[J]. Mol Cell Biol,2003,23(16):5664-5679.
[7] IKEYA M,KAWADA M,KIYONARI H,et al. Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis[J].Development,2006,133(22):4463-4473.
[8] BEN-NERIAH Z,MICHAELSON-COHEN R,INBAR-FEIGENBERG M,et al. A deleterious founder mutation in the BMPER gene causes diaphanospondylodysostosis(DSD)[J]. Am J Med Genet A,2011,155A(11):2801-2806.
[9] KUCHINSKAYA E,GRIGELIONIENE G,HAMMARSJ?魻 A,et al. Extending the phenotype of BMPER-related skeletal dysplasias to ischiospinal dysostosis[J]. Orphanet J Rare Dis,2016,11: 1.
[10] ENSRUD K E,CRANDALL C J. Osteoporosis[J]. Ann Intern Med,2017,167(3): Itc17-Itc32.
[11] FU C,ZHANG X,YE F,et al. High insulin levels in KK-Ay diabetic mice cause increased cortical bone mass and impaired trabecular micro-structure[J].Int J Mol Sci,2015,16(4):8213-8226.
[12] CHIODINI I,CATALANO A,GENNARI L,et al. Osteoporosis and fragility fractures in type 2 Diabetes[J]. J Diabetes Res,2020,2020: 9342696.
[13] CORTET B,LUCAS S,LEGROUX-GEROT I,et al. Bone disorders associated with diabetes mellitus and its treatments[J].Joint Bone Spine,2019,86(3):315-320.
[14] MOHSIN S,BANIYAS M M,ALDARMAKI R S,et al. An update on therapies for the treatment of diabetes-induced osteoporosis[J]. Expert Opin Biol Ther,2019,19(9):937-948.
[15] ZHANG Y,YANG J H. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts[J]. J Cell Biochem,2013,114(11):2595-2602.
[16] FENG Z,DENG H,DU J,et al. Lentiviral-mediated RNAi targeting p38MAPK ameliorates high glucose-induced apoptosis in osteoblast MC3T3-E1 cell line[J].Indian J Exp Biol,2011,49(2):94-104.
[17] MAO H,LI L,FAN Q,et al. Loss of bone morphogenetic protein-binding endothelial regulator causes insulin resistance[J].Nat Commun,2021,12(1): 1927.
[18] LANE J M,RUSSELL L,KHAN S N. Osteoporosis[J]. Clin Orthop Relat Res,2000,(372):139-150.
[19] TERAO Y,SATOMI-KOBAYASHI S,HIRATA K,et al. Involvement of Rho-associated protein kinase (ROCK) and bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) in high glucose-increased alkaline phosphatase expression and activity in human coronary artery smooth muscle cells[J]. Cardiovasc Diabetol,2015,14:104.
[20] SATOMI-KOBAYASHI S,KINUGASA M,KOBAYASHI R,et al. Osteoblast-like differentiation of cultured human coronary artery smooth muscle cells by bone morphogenetic protein endothelial cell precursor-derived regulator (BMPER)[J]. J Biol Chem,2012,287(36):30336-30345.
[21] HUANG P,YAN R,ZHANG X,et al. Activating Wnt/β-catenin signaling pathway for disease therapy:challenges and opportunities[J]. Pharmacol Ther,2019,196:79-90.
[22] JIANG T,XIA C,CHEN X,et al. Melatonin promotes the BMP9-induced osteogenic differentiation of mesenchymal stem cells by activating the AMPK/β-catenin signalling pathway[J]. Stem Cell Res Ther,2019,10(1):408.
[23] JACKULIAK P,PAYER J. Osteoporosis,fractures,and diabetes[J]. Int J Endocrinol,2014,2014:820615.
[24] XIA K,CEN X,YU L,et al.Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation[J]. J Cell Physiol,2020,235(9):6010-6022.
[25] YU A X,XU M L,YAO P,et al.Corylin,a flavonoid derived from Psoralea Fructus,induces osteoblastic differentiation via estrogen and Wnt/β-catenin signaling pathways[J]. FASEB J,2020,34(3):4311-4328.

相似文献/References:

备注/Memo

备注/Memo:
作者简介:刘峥(1995-),女,硕士在读,研究方向:内分泌与代谢病;通信作者:谢云,E-mail:xieyuntj@126.com。
更新日期/Last Update: 2022-07-20