|本期目录/Table of Contents|

[1]张晓梅,王冠元,韩 静,等.一种用于细胞成像检测Al(Ⅲ)的高选择性开关型烟酰肼类荧光探针[J].天津医科大学学报,2018,24(04):294-297.
 ZHANG Xiao-mei,WANG Guan-yuan,HAN Jing,et al.Synthesis of a highly selective and sensitive turn-on fluorescent sensor based on nicotionhydrazide for detecting Al3+ in cellular imaging[J].Journal of Tianjin Medical University,2018,24(04):294-297.
点击复制

一种用于细胞成像检测Al(Ⅲ)的高选择性开关型烟酰肼类荧光探针(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
24卷
期数:
2018年04期
页码:
294-297
栏目:
出版日期:
2018-07-20

文章信息/Info

Title:
Synthesis of a highly selective and sensitive turn-on fluorescent sensor based on nicotionhydrazide for detecting Al3+ in cellular imaging
作者:
张晓梅1王冠元2韩 静1孙予璇1李庆忠3谢承志1
1.天津医科大学药学院,天津300070;2.天津医科大学肿瘤医院药学部, 天津300060;3.烟台大学化学化工学院,烟台264005
Author(s):
ZHANG Xiao-mei1WANG Guan-yuan2HAN Jing1SUN Yu-xuan1LI Qing-zhong3XIE Cheng-zhi1
1. School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; 2. Department of Pharmacy , Cancer Institute and Hospital ,Tianjin Medical University, Tianjin 300060, China; 3. School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
关键词:
铝离子烟酰肼荧光探针密度泛函理论
Keywords:
Al3+ ion acylhydrazone fluorescence probe density functional theory
分类号:
R9
DOI:
-
文献标志码:
摘要:
目的:基于烟酰肼席夫碱配体,开发一种灵敏度高、选择性强的新型铝离子荧光探针。方法:通过2-羟基-1-萘甲醛和烟酰肼的缩合反应,合成一个酰腙衍生物2-羟基-1-萘甲醛烟酰腙(HL),并通过红外和核磁氢谱验证其结构。HL可通过荧光光谱检测样品中的铝离子及通过生物成像检测细胞中的铝离子。结果:HL结合铝离子后形成2:1的化合物,其荧光会发生显著的提高,并具有良好的选择性。基于密度泛函理论,通过计算验证其识别机制为激发态分子内质子转移(ESIPT)和分子内电荷转移(ICT)。HL在低浓度下和铝离子具有很好的线性关系,检测限为2.3 nmol/L。结论:基于具有良好的铝离子检测能力,此烟酰肼席夫碱配体可作为荧光探针应用于医学检验领域。
Abstract:
Objective: To develop a novel Al(Ⅲ) fluorescent probes with high sensitivity and good selectivity based on acylhydrazone Schiff base ligand. Methods: An acylhydrazone derivative 2-hydroxy-1-naphthylaldehyde nicotinoyl hydrazone (HL) was synthesized by combining 2-hydroxy-1-naphthaldehyde with nicotinohydrazide, and its structure was characterized with IR and 1H NMR. It was confirmed that HL could be used to detect Al3+ ions in sample by fluorescence spectra and Al3+ ions in cells by bioimaging. Results: HL with Al3+ exhibited a significant enhancement in the fluorescence emission and was highly selective among different cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) mechanism, which was proved by computational calculations using density functional theory(DFT). HL displayed good linear relationship with Al3+ at low concentration and the limit of detection was 2.3 nmol/L. Conclusion: Due to the outstanding features in Al3+ ion fluorescent detection, the novel acylhydrazone Schiff base ligand will lead to new discoveries in the fields of fluorescent sensors for medicine.

参考文献/References:


[1] Li L, Wu Z X, Li Y X, et al. Synthesis of aluminum-substituted tobermorite and the application on the Phosphorus removal from waste water[J]. Desalinat Water Treat , 2014, 52 :22
[2] Wolf N, Stubhan T, Manara J, et al. Stabilization of Aluminum doped Zinc oxide nanoparticle suspensions and their application in organic solar cells[J]. Thin Solid Films, 2014, 564(8): 213
[3] Crepeaux G, Heidi H, David M , et al. Assessment of the neurotoxic effects of Aluminum hydroxide vaccine adjuvant injections in mice[J]. Toxicol Lett, 2014, 229(S): S189
[4] Berthon G. Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity[J]. Coord Chem Rev, 2002, 228(2): 319
[5] Bhattacharjee S, Zhao Y, Hill J M, et al. Aluminum and its potential contribution to Alzheimer’s disease (AD)[J]. Front Aging Neurosci, 2014, 6 : 62
[6] Walton J R. Chronic Aluminum intake causes Alzheimer’s disease: applying Sir Austin Bradford Hill’s causality criteria[J]. J Alzheimers Dis, 2014, 40(4): 765
[7] Spencer H, Kramer L, Norris C, et al. Effect of small doses of aluminum-containing antacids on Calcium and Phosphorus metabolism[J]. Am J Clin Nutr, 1982, 36(1): 32
[8] Wang C, Zhao X Q, Chen R F, et al. Aluminum tolerance of wheat does not induce changes in dominant bacterial community composition or abundance in an acidic soil[J]. Plant Soil, 2013, 367(1/2): 275
[9] Kim S, Noh J Y, Kim K Y, et al. Salicylimine-based fluorescent chemosensor for Aluminum ions and application to bioimaging[J]. Inorg Chem, 2012, 51(6): 3597
[10] Liu Y J, Tian F F, Fan X Y, et al. Fabrication of an acylhydrazone based fluorescence probe for Al3+[J]. Sens Actuators B Chem, 2017, 240 : 916
[11] 曾惜,龚福春,夏姣云,等.一种基于ESIPT传感平台的Al3+荧光探针及其应用[J].分析实验室,2017,36(12):1380
[12] Tayade K, Sahoo S K, Bondhopadhyay B, et al. Highly selective turn-on fluorescent sensor for nanomolar detection of biologically important Zn2+ based on isonicotinohydrazide derivative: application in cellular imaging[J]. Biosens Bioelectron, 2014, 61 : 429
[13] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A. 02, Gaussian[M]. Inc., Wallingford CT, 2009
[14] Sahana S, Mishra G, Sivakumar S, et al. A 2-(2'-hydroxyphenyl)benzothiazole (HBT)-quinoline conjugate: a highly specific fluorescent probe for Hg(2+) based on ESIPT and its application in bioimaging[J]. Dalton Trans, 2015, 44(46): 20139
[15] De Cruz EHG, Carvalho PHPR, Corrêa J R, et al. Design, synthesis and application of fluorescent 2,1,3-benzothiadiazole-triazole-linked biologically active lapachone derivatives[J]. New J Chem, 2014, 38:2569

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-07-20