[1] KOBIYAMA K, LEY K. Atherosclerosis[J]. Circ Res, 2018, 123(10): 1118-1120.
[2] LIBBY P, BURING J E, BADIMON L, et al. Atherosclerosis[J]. Nat Rev Dis Primers, 2019, 5(1): 56.
[3] VINCI P, PANIZON E, TOSONI L M, et al. Statin-associated myopathy: emphasis on mechanisms and targeted therapy[J]. Int J Mol Sci, 2021, 22(21): 11687.
[4] ZHAO Y, LIU S. Bioactivity of naringin and related mechanisms[J]. Pharmazie, 2021, 76(8): 359-363.
[5] GANDHI G R, VASCONCELOS ABS, WU D T, et al. Citrus flavo-noids as promising phytochemicals targeting diabetes and related complications: a systematic review of in vitro and in vivo studies[J]. Nutrients, 2020, 12(10): 2907.
[6] ZHAO H, LIU M, LIU H, et al. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP pathway[J]. Biosci Rep, 2020, 40(3): BSR20193431.
[7] YADAV M, SEHRAWAT N, SINGH M, et al. Cardioprotective and hepatoprotective potential of citrus flavonoid naringin: current status and future perspectives for health benefits[J]. Asian J Biol Life Sci, 2020, 9(1): 1-5.
[8] 黄凯,毛子剑,刘学魁,等.柚皮苷制备柚皮苷二氢查尔酮的氢化工艺优化[J].中国食品添加剂,2024,35(2):48-57.
[9] CHOI J M, YOON B S, LEE S K, et al. Antioxidant properties of neohesperidin dihydrochalcone: inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death[J]. Biol Pharm Bull, 2007, 30(2): 324-330.
[10] WANG F, ZHAO C, TIAN G, et al. Naringin alleviates atherosclerosis in ApoE-/- mice by regulating cholesterol metabolism involved in gut microbiota remodeling[J]. J Agric Food Chem, 2020, 68(45): 12651-12660.
[11] BURNETT J R, HOOPER A J, HEGELE R A. Remnant cholesterol and atherosclerotic cardiovascular disease risk[J]. J Am Coll Cardiol, 2020, 76(23): 2736-2739.
[12] KAMSTRUP P R. Lipoprotein(a) and cardiovascular disease[J]. Clin Chem, 2021, 67(1): 154-166.
[13] YAMADA T, HAYASAKA S, SHIBATA Y, et al. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School cohort study[J]. J Epidemiol, 2011, 21(3): 169-175.
[14] TESTAI L, CALDERONE V. Nutraceutical value of citrus flavano-nes and their implications in cardiovascular disease[J]. Nutrients, 2017, 9(5): 502.
[15] WANG F, ZHAO C, YANG M, et al. Four citrus four citrus flavanones exert atherosclerosis alleviation effects in ApoE-/- mice via different metabolic and signaling pathways[J]. J Agric Food Chem, 2021, 69(17): 5226-5237.
[16] 彭颖,何婉莺,范鑫,等. 柚皮苷二氢查尔酮的抗氧化活性研究[J]. 中国食品学报, 2021, 21(2): 45-54.
[17] SCHREIER B, GEKLE M, GROSSMANN C. Role of epidermal gro-wth factor receptor in vascular structure and function[J]. Curr Opin Nephrol Hypertens, 2014, 23(2): 113-121.
[18] WANG L, HUANG Z, HUANG W, et al. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress[J]. Sci Rep, 2017, 7(1): 45917.
[19] ZHANG H, CHALOTHORN D, JACKSON L F, et al. Transactivation of epidermal growth factor receptor mediates catecholamine-induced growth of vascular smooth muscle[J]. Circ Res, 2004, 95(10): 989-997.
[20] LINDSEY M L. Assigning matrix metalloproteinase roles in ischae-mic cardiac remodelling[J]. Nat Rev Cardiol, 2018, 15(8): 471-479.
[21] NJAU F, HALLER H. Calcium dobesilate modulates PKC δ-NADPH oxidase-MAPK-NF-κB signaling pathway to reduce CD14, TLR4, and MMP9 expression during monocyte-to-macrophage differentiation: potential therapeutic implications for atherosclerosis[J]. Antioxidants, 2021, 10(11): 1798.
[22] 童辉煜,黄裕立,胡允兆. 基质金属蛋白酶9在动脉粥样硬化中的研究进展[J]. 中国动脉硬化杂志,2016,24(8):855-859.
[23] SHAO W, WANG S, WANG X, et al. miRNA-29a inhibits athero-sclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway[J]. Aging (Albany NY), 2022, 14(5): 2418-2431.
[24] BABAEV V R, DING L, ZHANG Y, et al. Macrophage IKKα deficiency suppresses Akt phosphorylation, reduces cell survival, and decreases early atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2016, 36(4): 598-607.
[25] 孟中华,尚莎莎,王建茹,等. 巨噬细胞PI3K/Akt通路与动脉粥样硬化的研究进展[J]. 中国免疫学杂志,2022,38(1):102-106.
[26] XIONG Y, YEPURI G, FORBITEH M, et al. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis[J]. Autophagy, 2014, 10(12): 2223-2238.
[27] ZHAI C, CHENG J, MUJAHID H, et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macro-phage and vulnerability of atherosclerotic plaque[J]. PLoS One, 2014, 9(3): e90563.
[28] XU S, BAI P, LITTLE P J, et al. Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications[J]. Med Res Rev, 2014, 34(3): 644-675.
[29] SAIRANEN T, SZEPESI R, KARJALAINEN-LINDSBERG M L, et al. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke[J]. Acta Neuropa-thol, 2009, 118(4): 541-552.
[30] HENNING R J, BOURGEOIS M, HARBISON R D. Poly(ADP-ribose) polymerase(PARP) and PARP inhibitors: mechanisms of action and role in cardiovascular disorders[J]. Cardiovasc Toxicol, 2018, 18(6): 493-506.
[31] DI Y Q, HAN X L, KANG X L, et al. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis[J]. Autophagy, 2021, 17(5): 1170-1192.
[32] WESSELY R. Atherosclerosis and cell cycle: put the brakes on! critical role for cyclin-dependent kinase inhibitors[J]. J Am Coll Cardiol, 2010, 55(20): 2269-2271.
[33] ARYAN L, YOUNESSI D, ZARGARI M, et al. The role of estrogen receptors in cardiovascular disease[J]. Int J Mol Sci, 2020, 21(12): 4314.
[1]孙旭森,张宇凡,李沅洋,等.Apelin-13在冠状动脉粥样硬化病变临床诊断中的应用价值[J].天津医科大学学报,2019,25(06):572.
SUN Xu-sen,ZHANG Yu-fan,LI Yuan-yang,et al.Application value of Apelin-13 in the clinical diagnosis of coronary arteriosclerosis[J].Journal of Tianjin Medical University,2019,25(01):572.