|本期目录/Table of Contents|

[1]范丽文,张宇凡,李娇,等.基于网络药理学、分子对接技术及细胞实验探究柚皮苷二氢查尔酮在动脉粥样硬化治疗中的分子机制[J].天津医科大学学报,2025,31(01):1-9.[doi:10.20135/j.issn.1006-8147.2025.01.0001]
 FAN Liwen,ZHANG Yufan,LI Jiao,et al.Exploring the molecular mechanism of naringin dihydrochalcone intervention in atherosclerosis based on network pharmacology, molecular docking and cell experiments[J].Journal of Tianjin Medical University,2025,31(01):1-9.[doi:10.20135/j.issn.1006-8147.2025.01.0001]
点击复制

基于网络药理学、分子对接技术及细胞实验探究柚皮苷二氢查尔酮在动脉粥样硬化治疗中的分子机制(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
31卷
期数:
2025年01期
页码:
1-9
栏目:
生物信息学及网络药理学专题
出版日期:
2025-01-20

文章信息/Info

Title:
Exploring the molecular mechanism of naringin dihydrochalcone intervention in atherosclerosis based on network pharmacology, molecular docking and cell experiments
文章编号:
1006-8147(2025)01-0001-09
作者:
范丽文1张宇凡2李娇2魏丽萍2
(1.天津医科大学研究生院,天津 300070;2.天津市人民医院心血管内科,天津 300121)
Author(s):
FAN Liwen1 ZHANG Yufan2 LI Jiao2 WEI Liping2
(1. Graduate School, Tianjin Medical University, Tianjin 300070, China; 2. Department of Cardiovascular Medicine, Tianjin People′s Hospital, Tianjin 300122, China)
关键词:
柚皮苷二氢查尔酮动脉粥样硬化网络药理学分子对接细胞实验
Keywords:
naringin dihydrochalcone atherosclerosis network pharmacology molecular docking cell experiments
分类号:
R543
DOI:
10.20135/j.issn.1006-8147.2025.01.0001
文献标志码:
A
摘要:
目的:利用网络药理学、分子对接技术及细胞实验探究柚皮苷二氢查尔酮在动脉粥样硬化(AS)治疗中的作用靶点和分子机制。方法:通过GeneCards、TTD、OMIM和Swiss Target Prediction等数据库获得AS和柚皮苷二氢查尔酮的潜在靶点,利用韦恩图确定二者的共同靶点,导入STRING在线平台形成蛋白互作(PPI)网络关系图,利用Cytoscape 3.8.2软件生成核心交集靶点图,同时将核心靶点输入DAVID数据库进行GO和KEGG通路富集分析,利用AutoDock4.2.6软件对药物及核心靶点进行分子对接验证。最后,选用人脐静脉内皮细胞,通过H2O2诱导建立AS氧化应激细胞模型进行体外生物学验证。结果:经过检索获得 2 044 个AS相关疾病靶点和 100 个柚皮苷二氢查尔酮作用靶点。韦恩图筛选获得 38 个交集靶点。PPI网络分析得到10个核心靶点,按MCC评分依次为EGFR、CASP3、ESR1、MTOR、FN1、MMP9、PARP1、PIK3CA、CTSD、CDK2。通过GO和KEGG通路分析显示这些靶点主要涉及炎症、PI3K/Akt信号通路和细胞程序性死亡的信号途径等。分子对接分析结果显示,柚皮苷二氢查尔酮和多个核心靶点具有良好的结合效能。细胞实验显示,与Control组相比,H2O2组细胞内活性氧簇(ROS)和Cleaved caspase-3的表达水平升高(F=17.77、73.31,均P<0.001),核因子κB(NF-κB) p65、基质金属蛋白酶9(MMP-9)和肿瘤坏死因子-α(TNF-α)蛋白的表达上调明显(F=22.65、18.64、9.97,均P<0.05)。与H2O2组相比,高浓度的柚皮苷二氢查尔酮能抑制细胞内的ROS(P<0.01)及剪切胱天蛋白酶3(Cleaved caspase-3)的表达升高(P<0.001),抑制NF-κB p65激活(P<0.01)以及下调MMP-9和TNF-α蛋白的表达(均P<0.01)。结论:柚皮苷二氢查尔酮可通过多靶点、多途径发挥治疗AS的作用。
Abstract:
Objective: To explore the target and molecular mechanism of naringin dihydrochalcone in the treatment of atherosclerosis using network pharmacology,molecular docking techniques and cell experiments. Methods: The potential targets of AS and naringin dihydrochalcone were obtained through databases such as GeneCards, TTD, OMIM, and Swiss Target Prediction. A Venn diagram was utilized to identify the common targets of the two compounds. Subsequently, these targets were imported into the STRING online platform to construct a protein-protein interaction(PPI) network diagram. The core intersecting target map was generated using Cytoscape 3.8.2 software. Additionally, the core targets were inputted into the DAVID database for Gene Ontology(GO) and KEGG pathway enrichment analysis. Molecular docking validation of the drug and core targets was performed using AutoDock 4.2.6 software. Finally, human umbilical vein endothelial cells were selected to establish an oxidative stress cell model induced by H2O2 for in vitro biological validation of AS. Results: Through retrieval, 2 044 disease targets related to AS and 100 action targets of naringin dihydrochalcone were obtained. The Venn diagram screening yielded 38 intersection targets. The PPI network analysis identified 10 core targets, ranked by MCC score as follows: EGFR, CASP3, ESR1, MTOR, FN1, MMP9, PARP1, PIK3CA, CTSD, and CDK2. The analyses of GO and KEGG pathways indicated that these targets were mainly involved in inflammation, the PI3K/Akt signaling pathway, and the signaling pathways of programmed cell death, etc. The results of molecular docking analysis demonstrated that naringin dihydrochalcone had favorable binding efficacy with multiple core targets. Cell experiments revealed that compared with the Control group, the expression levels of reactive oxygen species (ROS) and Cleaved caspase-3 in the H2O2 group increased(F=17.77, 73.31,both P<0.001), and the expressions of NF-κB p65, MMP-9, and TNF-α proteins were significantly upregulated (F=22.65, 18.64, 9.97,all P<0.05). Compared with the H2O2 group, high concentrations of naringin dihydrochalcone could inhibit the intracellular ROS (P<0.01) and the increased expression of Cleaved caspase-3 (P<0.001), inhibit the activation of NF-κB p65 (P<0.01), and downregulate the expressions of MMP-9 and TNF-α proteins (P<0.01). Conclusion: Naringin dihydrochalcone can play a role in the treatment of AS through multiple targets and multiple pathways.

参考文献/References:

[1] KOBIYAMA K, LEY K. Atherosclerosis[J]. Circ Res, 2018, 123(10): 1118-1120.
[2] LIBBY P, BURING J E, BADIMON L, et al. Atherosclerosis[J]. Nat Rev Dis Primers, 2019, 5(1): 56.
[3] VINCI P, PANIZON E, TOSONI L M, et al. Statin-associated myopathy: emphasis on mechanisms and targeted therapy[J]. Int J Mol Sci, 2021, 22(21): 11687.
[4] ZHAO Y, LIU S. Bioactivity of naringin and related mechanisms[J]. Pharmazie, 2021, 76(8): 359-363.
[5] GANDHI G R, VASCONCELOS ABS, WU D T, et al. Citrus flavo-noids as promising phytochemicals targeting diabetes and related complications: a systematic review of in vitro and in vivo studies[J]. Nutrients, 2020, 12(10): 2907.
[6] ZHAO H, LIU M, LIU H, et al. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP pathway[J]. Biosci Rep, 2020, 40(3): BSR20193431.
[7] YADAV M, SEHRAWAT N, SINGH M, et al. Cardioprotective and hepatoprotective potential of citrus flavonoid naringin: current status and future perspectives for health benefits[J]. Asian J Biol Life Sci, 2020, 9(1): 1-5.
[8] 黄凯,毛子剑,刘学魁,等.柚皮苷制备柚皮苷二氢查尔酮的氢化工艺优化[J].中国食品添加剂,2024,35(2):48-57.
[9] CHOI J M, YOON B S, LEE S K, et al. Antioxidant properties of neohesperidin dihydrochalcone: inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death[J]. Biol Pharm Bull, 2007, 30(2): 324-330.
[10] WANG F, ZHAO C, TIAN G, et al. Naringin alleviates atherosclerosis in ApoE-/- mice by regulating cholesterol metabolism involved in gut microbiota remodeling[J]. J Agric Food Chem, 2020, 68(45): 12651-12660.
[11] BURNETT J R, HOOPER A J, HEGELE R A. Remnant cholesterol and atherosclerotic cardiovascular disease risk[J]. J Am Coll Cardiol, 2020, 76(23): 2736-2739.
[12] KAMSTRUP P R. Lipoprotein(a) and cardiovascular disease[J]. Clin Chem, 2021, 67(1): 154-166.
[13] YAMADA T, HAYASAKA S, SHIBATA Y, et al. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School cohort study[J]. J Epidemiol, 2011, 21(3): 169-175.
[14] TESTAI L, CALDERONE V. Nutraceutical value of citrus flavano-nes and their implications in cardiovascular disease[J]. Nutrients, 2017, 9(5): 502.
[15] WANG F, ZHAO C, YANG M, et al. Four citrus four citrus flavanones exert atherosclerosis alleviation effects in ApoE-/- mice via different metabolic and signaling pathways[J]. J Agric Food Chem, 2021, 69(17): 5226-5237.
[16] 彭颖,何婉莺,范鑫,等. 柚皮苷二氢查尔酮的抗氧化活性研究[J]. 中国食品学报, 2021, 21(2): 45-54.
[17] SCHREIER B, GEKLE M, GROSSMANN C. Role of epidermal gro-wth factor receptor in vascular structure and function[J]. Curr Opin Nephrol Hypertens, 2014, 23(2): 113-121.
[18] WANG L, HUANG Z, HUANG W, et al. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress[J]. Sci Rep, 2017, 7(1): 45917.
[19] ZHANG H, CHALOTHORN D, JACKSON L F, et al. Transactivation of epidermal growth factor receptor mediates catecholamine-induced growth of vascular smooth muscle[J]. Circ Res, 2004, 95(10): 989-997.
[20] LINDSEY M L. Assigning matrix metalloproteinase roles in ischae-mic cardiac remodelling[J]. Nat Rev Cardiol, 2018, 15(8): 471-479.
[21] NJAU F, HALLER H. Calcium dobesilate modulates PKC δ-NADPH oxidase-MAPK-NF-κB signaling pathway to reduce CD14, TLR4, and MMP9 expression during monocyte-to-macrophage differentiation: potential therapeutic implications for atherosclerosis[J]. Antioxidants, 2021, 10(11): 1798.
[22] 童辉煜,黄裕立,胡允兆. 基质金属蛋白酶9在动脉粥样硬化中的研究进展[J]. 中国动脉硬化杂志,2016,24(8):855-859.
[23] SHAO W, WANG S, WANG X, et al. miRNA-29a inhibits athero-sclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway[J]. Aging (Albany NY), 2022, 14(5): 2418-2431.
[24] BABAEV V R, DING L, ZHANG Y, et al. Macrophage IKKα deficiency suppresses Akt phosphorylation, reduces cell survival, and decreases early atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2016, 36(4): 598-607.
[25] 孟中华,尚莎莎,王建茹,等. 巨噬细胞PI3K/Akt通路与动脉粥样硬化的研究进展[J]. 中国免疫学杂志,2022,38(1):102-106.
[26] XIONG Y, YEPURI G, FORBITEH M, et al. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis[J]. Autophagy, 2014, 10(12): 2223-2238.
[27] ZHAI C, CHENG J, MUJAHID H, et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macro-phage and vulnerability of atherosclerotic plaque[J]. PLoS One, 2014, 9(3): e90563.
[28] XU S, BAI P, LITTLE P J, et al. Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications[J]. Med Res Rev, 2014, 34(3): 644-675.
[29] SAIRANEN T, SZEPESI R, KARJALAINEN-LINDSBERG M L, et al. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke[J]. Acta Neuropa-thol, 2009, 118(4): 541-552.
[30] HENNING R J, BOURGEOIS M, HARBISON R D. Poly(ADP-ribose) polymerase(PARP) and PARP inhibitors: mechanisms of action and role in cardiovascular disorders[J]. Cardiovasc Toxicol, 2018, 18(6): 493-506.
[31] DI Y Q, HAN X L, KANG X L, et al. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis[J]. Autophagy, 2021, 17(5): 1170-1192.
[32] WESSELY R. Atherosclerosis and cell cycle: put the brakes on! critical role for cyclin-dependent kinase inhibitors[J]. J Am Coll Cardiol, 2010, 55(20): 2269-2271.
[33] ARYAN L, YOUNESSI D, ZARGARI M, et al. The role of estrogen receptors in cardiovascular disease[J]. Int J Mol Sci, 2020, 21(12): 4314.

相似文献/References:

[1]孙旭森,张宇凡,李沅洋,等.Apelin-13在冠状动脉粥样硬化病变临床诊断中的应用价值[J].天津医科大学学报,2019,25(06):572.
 SUN Xu-sen,ZHANG Yu-fan,LI Yuan-yang,et al.Application value of Apelin-13 in the clinical diagnosis of coronary arteriosclerosis[J].Journal of Tianjin Medical University,2019,25(01):572.

备注/Memo

备注/Memo:
基金项目:天津市卫生健康科技项目(TJWJ2022QN037);天津市人民医院重点课题(2023YJZD003)
作者简介:范丽文(1999-),女,硕士在读,研究方向:动脉粥样硬化发生机制、纳米材料应用;通信作者:魏丽萍,E-mail:weilipingme@163.com。
更新日期/Last Update: 2025-02-10