|本期目录/Table of Contents|

[1]修占杰,刘佳玙,王誉童,等.基于生信分析对强直性脊柱炎关键基因及药物靶点的 预测[J].天津医科大学学报,2024,30(06):535-542.[doi:10.20135/j.issn.1006-8147.2024.06.0535]
 XIU Zhanjie,LIU Jiayu,WANG Yutong,et al.Key genes and drug targets prediction of ankylosing spondylitis based on bioinformatics analysis[J].Journal of Tianjin Medical University,2024,30(06):535-542.[doi:10.20135/j.issn.1006-8147.2024.06.0535]
点击复制

基于生信分析对强直性脊柱炎关键基因及药物靶点的 预测(PDF)
分享到:

《天津医科大学学报》[ISSN:1006-8147/CN:12-1259/R]

卷:
30卷
期数:
2024年06期
页码:
535-542
栏目:
基础医学
出版日期:
2024-11-20

文章信息/Info

Title:
Key genes and drug targets prediction of ankylosing spondylitis based on bioinformatics analysis
文章编号:
1006-8147(2024)06-0535-08
作者:
修占杰1刘佳玙2王誉童3踪宇阳4郑子馨5施佳维6李津17孟歆怿7
(1.天津医科大学基础医学院生物信息学系,天津 300070;2.天津市实验中学滨海学校,天津 300459;3.天津市第二十中学,天津 300050;4.天津市南开中学,天津 300199;5.天津市耀华中学,天津 300040;6.天津市第四中学,天津 300211;7.天津医科大学基础医学院细胞生物学系,天津 300070)
Author(s):
XIU Zhanjie1LIU Jiayu2WANG Yutong3ZONG Yuyang4ZHENG Zixin5SHI Jiawei6LI Jin17MENG Xinyi7
(1.Department of Bioinformatics,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China;2.Tianjin Experimental Binhai High School,Tianjin 300459,China;3.Tianjin No.20 High School,Tianjin 300050,China;4.Tianjin Nankai High School,Tianjin 300199,China;5.Tianjin Yaohua High School,Tianjin 300040,China;6.Tianjin No.4 High School,Tianjin 300211,China;7.Department of Cell Biology,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China)
关键词:
强直性脊柱炎差异表达基因加权基因共表达网络分析CIBERSORT 免疫细胞药物靶点
Keywords:
ankylosing spondylitis differentially expressed gene weighted gene co-expression network analysis CIBERSORT immune cells drug target
分类号:
R593.23
DOI:
10.20135/j.issn.1006-8147.2024.06.0535
文献标志码:
A
摘要:
目的:基于强直性脊柱炎(AS)基因芯片数据,应用生物信息学分析方法识别免疫细胞亚型相关的关键基因及药物靶点预测。方法:GEO数据库下载AS基因表达数据,筛选差异表达基因(DEGs);运用R软件包进行基因本体论(GO)和京都基因和基因组百科全书(KEGG)富集分析;应用CIBERSORT 反卷积算法和加权基因共表达网络分析(WGCNA)建立免疫细胞亚型与基因表达的关联性,结合蛋白质互作(PPI)网络筛选的枢纽基因进而确定AS关键基因,药物优先指数(Pi)数据库预测关键基因药物靶点指标。结果:共筛选出 126 个DEGs,通路富集分析显示DEGs主要富集于淋巴及自然杀伤(NK)细胞免疫调节和毒性信号通路。WGCNA确定了3个模块与AS的中性粒细胞、CD8+T细胞和激活型NK细胞亚型相关性较强:棕色模块与中性粒细胞、绿色模块与中性粒细胞、蓝绿色模块与CD8+T细胞、蓝绿色模块与激活型NK细胞(cor=0.83、0.68、0.52、 0.28,均P<0.05)。PPI与模块基因结合筛选出 5 个关键基因,分别为CXCR1、IKZF1、RUNX3、ID2和ITGB3,基因Pi分析IKZF1和 ITGB3在AS中排名较高。结论: CXCR1、IKZF1、RUNX3、ID2和ITGB3在AS中发挥重要作用,IKZF1和ITGB3可作为潜在药物治疗靶点。
Abstract:
Objective:Based on ankylosing spondylitis(AS) microarray data,bioinformatics analysis was used to identify key genes and drug targets related to immune cell subtypes. Methods: AS gene expression data were downloaded from GEO database,and differentially expressed genes (DEGs) were screened. Enrichment analysis of gene ontology(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed using R software package; CIBERSORT deconvolution algorithm and weighted gene co-expression network analysis (WGCNA) were used to establish the association between immune cell subtypes and gene expression,and key AS genes were identified by combining hub genes screened by protein-protein interaction (PPI) network. Key genes were predicted as drug targets in priority index (Pi) database. Results: A total of 126 DEGs were screened. Pathway enrichment analysis showed that they were mainly enriched in immune regulation and toxicity signaling pathways of lymphocytes and NK cells. WGCNA identified 3 modules were strongly correlated with neutrophils,CD8+T cells and activated NK cells of AS: brown module with neutrophils,green module with neutrophils,turquoise module with CD8+T cells,turquoise module with activated NK cells(cor=0.83,0.68,0.52,0.28,all P<0.05). Five key genes were screened by combing PPI with module genes,namely CXCR1,IKZF1,RUNX3,ID2 and ITGB3. IKZF1 and ITGB3 rank top in AS by Priority index analysis. Conclusion: CXCR1,IKZF1,RUNX3,ID2 and ITGB3 play important roles in AS; IKZF1 and ITGB3 can be used as potential drug therapeutic targets.

参考文献/References:

[1] BRAUN J,SIEPER J. Ankylosing spondylitis[J].Lancet,2007,369(9570):1379-1390.
[2] RUDWALEIT M,VAN DER HEIJDE D,LANDEWE R,et al. The development of assessment of spondyloarthritis international society classification criteria for axial spondyloarthritis(part ii): validation and final selection[J]. Ann Rheum Dis,2009,68(6):777-783.
[3] ZHU W,HE X,CHENG K,et al. Ankylosing spondylitis: etiology,pathogenesis,and treatments[J]. Bone Res,2019,7:22.
[4] ZHAI J,RONG J,LI Q,et al. Immunogenetic study in Chinese population with ankylosing spondylitis: are there specific genes recently disclosed?[J]. Clin Dev Immunol,2013,2013:419357.
[5] DEAN L E,JONES G T,MACDONALD A G,et al. Global prevalence of ankylosing spondylitis[J]. Rheumatology(Oxford),2014, 53(4):650-657.
[6] JAAKKOLA E,HERZBERG I,LAIHO K,et al. Finnish HLA studies confirm the increased risk conferred by HLA-b27 homozygosity in ankylosing spondylitis[J]. Ann Rheum Dis,2006,65(6):775-780.
[7] VORUGANTI A,BOWNESS P. New developments in our understanding of ankylosing spondylitis pathogenesis[J]. Immunology,2020,161(2):94-102.
[8] SMOLEN J S,SCHOLS M,BRAUN J,et al. Treating axial spondyloarthritis and peripheral spondyloarthritis,especially psoriatic arthritis,to target: 2017 update of recommendations by an international task force[J]. Ann Rheum Dis,2018,77(1):3-17.
[9] DUBASH S,BRIDGEWOOD C,MCGONAGLE D,et al. The advent of IL-17a blockade in ankylosing spondylitis: secukinumab,ixekizumab and beyond[J]. Expert Rev Clin Immunol,2019,15(2):123-134.
[10] WARD M M,DEODHAR A,GENSLER L S,et al. 2019 update of the American college of rheumatology/spondylitis association of America/spondyloarthritis research and treatment network recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis[J]. Arthritis Rheumatol,2019,71(10):1599-1613.
[11] BROWN M A,KENNA T,WORDSWORTH B P. Genetics of ankylosing spondylitis--insights into pathogenesis[J]. Nat Rev Rheumatol,2016,12(2):81-91.
[12] LIEW F Y. T(h)1 and T(h)2 cells: a historical perspective[J]. Nat Rev Immunol,2002,2(1):55-60.
[13] SHEN H,GOODALL J C,HILL GASTON J S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis[J]. Arthritis Rheum,2009,60(6):1647-1656.
[14] ZHAO Z B,BIAN Z H,LIN Z M,et al. Single-cell analysis of patients with axial spondyloarthritis after anti-tnfalpha treatment: experimental data and review of the literature[J]. Clin Rev Allergy Immunol,2023,65(2):136-147.
[15] CICCIA F,GUGGINO G,RIZZO A,et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut,in the peripheral blood,synovial fluid and bone marrow of patients with ankylosing spondylitis[J]. Ann Rheum Dis,2015,74(9):1739-1747.
[16] HEIZMANN B,KASTNER P,CHAN S. The ikaros family in lymphocyte development[J].Curr Opin Immunol,2018,51:14-23.
[17] HOSHINO A,BOUTBOUL D,ZHANG Y,et al. Gain-of-function ikzf1 variants in humans cause immune dysregulation associated with abnormal T/B cell late differentiation[J]. Sci Immunol,2022,7(69):eabi7160.
[18] FAN W,WANG X,ZENG S,et al. Global lactylome reveals lactylation-dependent mechanisms underlying t(h)17 differentiation in experimental autoimmune uveitis[J]. Sci Adv,2023,9(42):eadh-4655.
[19] TAAMS L S,STEEL KJA,SRENATHAN U,et al. IL-17 in the immunopathogenesis of spondyloarthritis[J]. Nat Rev Rheumatol,2018, 14(8):453-466.
[20] SEO W,NOMURA A,TANIUCHI I. The roles of RUNX proteins in lymphocyte function and anti-tumor immunity[J]. Cells,2022,11(19):3116.
[21] VECELLIO M,ROBERTS A R,COHEN C J,et al. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression[J]. Ann Rheum Dis,2016,75(8):1534-1540.
[22] VECELLIO M,CHEN L,COHEN C J,et al. Functional genomic analysis of a RUNX3 polymorphism associated with ankylosing spondylitis[J]. Arthritis Rheumatol,2021,73(6):980-990.
[23] CHINAS M,FERNANDEZ-SALINAS D,AGUIAR VRC,et al. Functional genomics implicates natural killer cells as potential key drivers in the pathogenesis of ankylosing spondylitis[J]. Med Rxiv,2023: 23295912.
[24] LEVANON D,NEGREANU V,LOTEM J,et al. Transcription factor RUNX3 regulates interleukin-15-dependent natural killer cell activation[J]. Mol Cell Biol,2014,34(6):1158-1169.
[25] ZHU C,KONG Z,WANG B,et al. ITGB3/cd61: a hub modulator and target in the tumor microenvironment[J]. Am J Transl Res,2019, 11(12):7195-7208.
[26] QAIYUM Z,GRACEY E,YAO Y,et al. Integrin and transcriptomic profiles identify a distinctive synovial CD8+T cell subpopulation in spondyloarthritis[J].Ann Rheum Dis,2019,78(11):1566-1575.

相似文献/References:

[1]王世霞,杨艳芳,马 宁,等.基于芯片数据的雌激素受体阳性乳腺癌他莫昔芬耐药相关基因分析[J].天津医科大学学报,2019,25(01):32.
 WANG Shi-xia,YANG Yan-fang,MA Ning,et al.Bioinformatics analysis of key genes for tamoxifen resistancein estrogen receptor positive breast cancer[J].Journal of Tianjin Medical University,2019,25(06):32.
[2]刘玉林,臧玉琴,王颖梅,等.基于生物信息学分析筛选宫颈癌进展中的关键基因[J].天津医科大学学报,2022,28(01):8.
 LIU Yu-lin,ZANG Yu-qin,WANG Ying-mei,et al.Identification of key genes in cervical cancer progression by integrated bioinformatics analysis[J].Journal of Tianjin Medical University,2022,28(06):8.
[3]罗焱瑞,赵倩.基于多组学Lasso回归分析构建肝癌预测模型[J].天津医科大学学报,2024,30(03):205.[doi:10.20135/j.issn.1006-8147.2024.03.0205]
 LUO Yanrui,ZHAO Qian.A liver cancer prediction model based on multi-omics Lasso regression analysis[J].Journal of Tianjin Medical University,2024,30(06):205.[doi:10.20135/j.issn.1006-8147.2024.03.0205]
[4]申杨,段子博,谭展望,等.外阴鳞状细胞癌关键基因的筛选及免疫浸润分析[J].天津医科大学学报,2024,30(05):391.[doi:10.20135/j.issn.1006-8147.2024.05.0391]
 SHEN Yang,DUAN Zibo,TAN Zhanwang,et al.Screening and immunoinfiltration analysis of key genes in vulvar squamous cell carcinoma[J].Journal of Tianjin Medical University,2024,30(06):391.[doi:10.20135/j.issn.1006-8147.2024.05.0391]

备注/Memo

备注/Memo:
基金项目 天津市教委科研计划项目(2020KJ196) 作者简介 修占杰(1995-),男,硕士在读,研究方向:生物信息学与计算生物学;
通信作者:李津,E-mail:jli01@tmu.edu.cn;孟歆怿,E-mail:mengxy@tmu.edu.cn。
更新日期/Last Update: 2024-11-25